Unformatted text preview: n =0 (1) n x 2 n 2 2 n ( n !) 2 converges for all x . 2. Find the radius of convergence for the power series: (a) âˆž X n =1 3n n x 2 n (b) âˆž X n =1 1 Â· 3 Â· 5 Â·Â·Â· (2 n1) 2 Â· 5 Â· 8 Â·Â·Â· (3 n1) x n 3. Find the interval of convergence for the power series: (a) âˆž X n =1 n b n ( xa ) n , where a,b âˆˆ R and b > (b) âˆž X n =1 2 n n 2 ( x3) n 1...
View
Full Document
 Summer '11
 Katherine
 Power Series, two weeks, Radius of convergence, Cauchyâ€“Hadamard theorem

Click to edit the document details