Gu\u00eda M\u00e9todos de Integraci\u00f3n.pdf - UNIVERSIDAD DEL B\u00b4 IO-B\u00b4 IO FACULTAD DE CIENCIAS \u00b4 DEPARTAMENTO DE CIENCIAS BASICAS \u00b4 CHILLAN Docente Edwars

# Guía Métodos de Integración.pdf - UNIVERSIDAD DEL B´...

This preview shows page 1 - 2 out of 4 pages.

UNIVERSIDAD DEL B ´ IO-B ´ IO FACULTAD DE CIENCIAS DEPARTAMENTO DE CIENCIAS B ´ ASICAS CHILL ´ AN Docente: Edwars Jim´ enez Gu´ ıa: M´ etodos de Integraci´on. 1. Eval´ue las siguientes integrales utilizando el m´ etodo de la sustituci´ on. a ) ˆ (ln( x - 1)) 5 x - 1 dx =. b ) ˆ ( 2 3 x + 1) 3 p x 3 + 3 xdx =. c ) ˆ sec(2 x ) tan(2 x ) dx =. d ) ˆ x x - 1 dx =. e ) ˆ cos( x ) sin 2 ( x ) dx =. f ) ˆ x sec 2 ( x 2 ) tan( x 2 ) dx =. g ) ˆ arcsin( x ) 1 - x 2 dx =. h ) ˆ e x sin( e x ) dx =. i ) ˆ sec 2 (1 /x ) x 2 dx =. j ) ˆ cos 2 ( x ) sin( x ) dx =. k ) ˆ x sin(1 + x 3 / 2 ) dx =. l ) ˆ dx cos 2 ( x ) p 1 + tan( x ) =. m ) ˆ x 3 p x 2 + 1 dx =. n ) ˆ sin(tan( x )) cos 2 ( x ) dx =. ˜n ) ˆ (cos 2 ( x ) - sin 2 ( x )) dx =. o ) ˆ (2 x 3 - 1)( x 4 - 2 x ) 6 dx =. p ) ˆ cos( πx ) cos(sin( πx )) dx =. q ) ˆ sin 5 (3 x ) cos(3 x ) dx =. r ) ˆ f ( x ) f 0 ( x ) dx =. s ) ˆ tan(ln( x )) x dx =. t ) ˆ x 2 tan( x 3 ) dx =. u ) ˆ x sin( x 2 ) cos( x 2 ) dx =. v ) ˆ cot(1 /x ) x 2 dx =. w ) ˆ csc 2 ( x ) 1 + cot( x ) dx =. x ) ˆ 5 ( x + 1) ln( x + 1) dx =. y ) ˆ 2 e 2 x e 2 x +10 dx =. z ) ˆ 5 (1 + x 2 ) arctan( x ) dx =. 2. Eval´ue las siguientes integrales utilizando el m´ etodo de integraci´ on por partes. a ) ˆ xe 2 x dx =.

#### You've reached the end of your free preview.

Want to read all 4 pages?

• Winter '17
• mabely
• =, D-Generation X, cos2

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern