Linear System Theory Hw04

Linear System Theory Hw04 - Linear System Theory (4541.512)...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Linear System Theory (4541.512) – Spring 2011 Prof. Songhwai Oh Homework 4. (Due: 6/1/2011) 1. Let be the impulse response matrix of a linear system. Show that the map (1) is bounded if and only if, for all and , the map (2) is bounded, where is an element of at -th row and -th column. 2. Consider a linear time-varying system represented as Show that . A solution to the Lyapunov equation can be satisfies 3. Consider a LTI system , where (a) Find the transfer function. (b) Is the system asymptotically stable? (Explain) (c) Is the system BIBO stable? (Explain) (d) Is the system controllable? Is the system observable? (Explain) 4. Consider a LTI system new input. and a state feedback control , where is a (a) Find the transfer function of the closed-loop system, i.e., the transfer function of the closed-loop system with input and output . (b) Show that if the original system is controllable then the closed-loop system is also controllable. 5. Consider the controllability and observability grammians over the time period , where and of a LTI system (a) Find the controllability and observability grammians under similarity transformations. Note that the transformed system is . (b) Prove that the eigenvalues of the product are constants under similarity transformations. 1 ...
View Full Document

This note was uploaded on 09/21/2011 for the course EE 221A taught by Professor Clairetomlin during the Spring '10 term at Berkeley.

Ask a homework question - tutors are online