Techniques in Differentiation

# Techniques in Differentiation - Contents 3 Techniques of...

This preview shows pages 1–6. Sign up to view the full content.

Contents 3 Techniques of Differentiation 44 3.1 Differentiating Functions Involving the Power Rule, Constants and the Sums of Differentiable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Differentiating Functions Involving Products, Powers and Quotients . . . . . . . . . . . . . . 45 3.3 Differentiating the Composite of Functions Using the Chain Rule . . . . . . . . . . . . . . . . 47 3.4 Differentiating Rational Powers of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Derivatives of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 Derivatives of Logarithmic and Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 52 3.7 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.8 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.9 Derivatives of Functions of the Form f ( x ) = g ( x ) h ( x ) . . . . . . . . . . . . . . . . . . . . . . . 59 3.10 Logarithmic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.11 Tangent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
CONTENTS 2
Chapter 3 Techniques of Differentiation 3.1 Differentiating Functions Involving the Power Rule, Constants and the Sums of Differentiable Functions For questions numbered 1–23, compute the indicated derivative. The letters a, b, c, α, β, γ , represent con- stants. Answers should be simplified and in a factored form wherever possible. 1. y = 3 x 5 - 2 x 3 ; D x y D x y = 3 x 2 (5 x 2 - 2) 2. z = 3 ax 2 + 2 bx + c ; dz dx 3. y = ( 2) 3 - ( 2) 5 ; y 0 4. y = ax + b c ; y 0 y 0 = a c 5. y = 1 + x + x 2 2! + x 3 3! + · · · + x n n ! ; y 0 6. y = ( 7 2 x 3 - 3 x 2 + 1 3 x - 1 ) - ( 2 x 4 + 2 x 3 - 1 2 x 2 - 2 ) ; D x y 7. G ( t ) = α + ( α + β ) t + ( α + β + γ ) t 2 ; G 0 (2) [ G 0 (2) = 5 α + 5 β + 4 γ ] 8. y ( x ) = ax 2 + bx x ; y 0 ( x ) 9. F ( t ) = a 2 +2 abt + b 2 t 2 a 2 +2 ab + b 2 ; F 0 (1) 10. y = a 2 +2 abx + b 2 x 2 a + bx ; y 0 [ y 0 = b ] 11. y = x 2 - 1 x +1 ; y 0 12. y = ax 1 2 + bx 3 2 + cx 5 2 x ; y 0 13. f ( x ) = 5 x 101 + 17 x 2 + 8; f 0 ( x ) [ f 0 ( x ) = 505 x 100 + 34 x ] 14. y = ( a + bx 2 ) 3 ; D x y 15. y = x 3 - a 3 x - a ; D x y 16. f ( x ) = | x | ; f 0 (2) [ f 0 (2) = 1] 17. f ( x ) = x + | x - 3 | ; f 0 (2)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
45 3.2 Differentiating Functions Involving Products, Powers and Quotients 18. f ( x ) = | x | x ; f 0 (1) and f 0 ( - 1) 19. f ( x ) = x + | x 2 - 2 | ; f 0 (1) [ f 0 (1) = - 1] 20. f ( x ) = x + | x 2 - 2 | ; f 0 (3) 21. It is true that sin x = x - x 3 3! + x 5 5! - · · · + ( - 1) n x 2 n +1 (2 n +1)! + · · · cos x = 1 - x 2 2! + x 4 4! - · · · + ( - 1) n x 2 n (2 n )! + · · · These are infinite series representations of sin and cos. By differentiating the series term by term, find formulae for D x sin x and D x cos x . 22. F ( x 1 2 ) = ax 3 2 + bx 5 2 + cx 5 ; D x 1 2 F ( x 1 2 ) h D x 1 2 F ( x 1 2 ) = 3 ax + 5 bx 2 + 10 cx 9 2 i 23. (a) F ( x 2 ) = x 6 + 3 x 2 + 1; D x 2 F ( x 2 ) (b) F ( x ) = x 2 + x + 2; D x F ( x ) (c) F ( x + 1) = x 2 + 2 x + 2; D ( x +1) F ( x + 1) (d) F ( a - x ) = a 2 - 2 ax + x 2 - a - x ; D ( a - x ) F ( a - x ) 24. Use the definition of the derivative to prove that D x ( af ( x ) - bg ( x ) ) = aD x f ( x ) - bD x g ( x ). 3.2 Differentiating Functions Involving Products, Powers and Quo- tients For questions numbered 25–53, compute the derivative. Answers should be simplified and in a factored form wherever possible. 25. y = ( a + bx 2 ) 3 ; y 0 y 0 = 6 bx ( a + bx 2 ) 2 26. y = ( x 2 + 2 x )(3 x + 1); dy dx 27. y = ( x 3 + 6 x 2 - 2 x + 1)( x 2 + 3 x - 5); y 0 28. y = (3 + x 3 )(4 + x 2 ); D x y D x y = x (5 x 3 + 12 x + 16) 29. z = ( a - x )( a 2 + ax + x 2 ); dz dx 30. W = ( a + bx )( a 4 - a 3 bx + a 2 b 2 x 2 - ab 3 x 3 + b 4 x 4 ); W 0 31. f ( x ) = a - x x ; f 0 ( x ) f 0 ( x ) = - a x 2 32. f ( x ) = x a - x ; f ( x ) 33. y = x - a x + a ; D x y 34. y = x + a x - a ; D x y h D x y = - 29 ( x - 9) 2 i 35. F ( t ) = 1+ t 1+ t 2 ; F 0 ( t )
Techniques of Differentiation 46 36. F ( t ) = t 2 +2 t +1 ( t +1) 2 ; F 0 ( t ) 37. f ( x ) = 2 x 2 - 3 x x 2 +3 ; f 0 ( x ) h f 0 ( x ) = 3 x 2 +12 x - 9 ( x 2 +3) 2 i 38. T ( t 3 - 3 t + 3) 3 ; dT dt 39. y = 2 x 2 - 3 x +4 x ; y 0 40. y = 3 x - 2 2 x +3 ; y 0 41. φ = 2 θ +3 3 θ +2 ; φ 0 42. y = x x 2 +1 ; D x y 43. φ = (2 x 3 + x 2 - 4 x - 1) 4 ; φ 0 φ 0 = 8(3 x 2 + x - 2)(2 x 3 + x 2 - 4 x - 1) 3 44. ψ ( φ ) = ( θ +3) 2 θ +2 ; ψ 0 ( φ ) 45. τ ( θ ) = (1 + θ 2 )(1 + θ 3 ); τ 0 ( θ ) 46. y = 1+

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern