Derivatives - Some Differentiation Rules The following...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Some Differentiation Rules The following pages list various rules for finding derivatives with very basic examples to show how the rules are used. The following pages are NOT formula sheets for exams or quizzes. The examples are NOT examples or samples of the problems that will be on exams. It is not a substitute for lecture or recitation. Definition: Let f ( x ) be a function. Then the derivative of f ( x ) is the function denoted f prime ( x ) given by f prime ( x ) = lim h → f ( x + h )- f ( x ) h PROVIDED this limit exists. For a particular value of x , say x = a , the derivative evaluated at x = a is given by f prime ( a ) = f prime ( x ) vextendsingle vextendsingle vextendsingle x = a = lim h → f ( a + h )- f ( a ) h PROVIDED this limit exists at x = a . A function y = f ( x ) is differentiable at a if f prime ( a ) exists, i.e., if the above limit exists. This value f prime ( a ) is called the derivative of f at x = a . Other notations: f prime ( x ) df dx d dx f D x f y prime dy dx d dx y D x y Notations for Higher Order Derivatives: 2 nd order: f primeprime ( x ) d 2 f dx 2 d 2 dx 2 f D (2) x f y primeprime d 2 y dx 2 d 2 dx 2 y D (2) x y 3 rd order: f primeprimeprime ( x ) d 3 f dx 3 d 3 dx 3 f D (3) x f y primeprimeprime d 3 y...
View Full Document

This note was uploaded on 09/25/2011 for the course CALCULUS 135 taught by Professor Augustarainsford during the Spring '11 term at Rutgers.

Page1 / 3

Derivatives - Some Differentiation Rules The following...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online