lecture16

lecture16 - 5.61 Fall 2007 Separable Systems page 1 QUANTUM...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5.61 Fall 2007 Separable Systems page 1 QUANTUM IN : SEPARABLE SYSTEMS 1D Systems 3D Systems x r = ( x y z ) = i x + j y + k z d + j + k p = i dx p = ( p x p y p z ) = i i x i y i y x , p i = x , p x = i y p , y = i z , p z = i p 2 2 d 2 p 2 2 2 2 2 2 2 T = = T = = + + 2 m 2 m dx 2 2 m 2 m x 2 2 m y 2 2 m y 2 ( x ) ( x y z , , ) O = * ( x ) O ( x ) dx O = * ( x y z , , ) O ( x y z , , ) dx dy dz By fiat, operators corresponding to different axes commute with one another. = p y = yp p p = etc . xy yx p p z z z x x z Further, operators in one variable have no effect on functions of another: xf ( y ) = f ( y ) p f ( x ) = f ( x ) f * ( z ) p = * ( ) x z p z x p x f z etc . The Time Independent Schrdinger Equation becomes: 2 2 2 2 2 + 2 + 2 + V ( x , y , z ) ( x , y , z ) = E ( x , y , z ) 2 m x y z 2 the Laplacian 2 2 + V ( x , y , z ) ( x , y , z ) = E ( x , y , z ) 2 m H = 2 2 + V ( x , , ) y z Hamiltonian operator in 3D 2 m ( , y z , ) = ( x , , ) 3D Schrdinger equation H x E y z (Time Independent) Separation of variables 5.61 Fall 2007 Separable Systems page 2 IF V ( x , y , z ) = V x ( x ) + V y ( y ) + V z ( z ) 2 2 2 2 2 2 ( ) 2 x ( ) 2 y ( ) 2 z ( ) , x y + + V H x , y z = + V + + V z then 2 m x 2 m y 2 m z = H + H + H x y z Schrdingers Eq. becomes: H + H + H x , y , z = E x , , x y z ( ) ( y z ) Then try solution of form ( x , y , z ) = x ( x ) y ( y ) z ( z ) (separation of variables) Where we assume that the 1D functions satisfy the appropriate 1D TISE: H ( x ) = E ( x ) x x x x H y y ( y ) = E y y ( y ) H ( z ) = E ( z ) z z z z First term: H x x ( x ) y ( y ) z ( z ) = y ( y ) z ( z ) H x x ( x ) = y ( y ) z ( z ) E x x ( x ) E ( ) ( ) z = x x x y y z ( ) Same for H and H y z H = E H x + H y + H z x ( x ) y ( y ) z ( z ) = ( E x + E y + E z ) x ( x ) y ( y ) z ( z ) E = E + E + E x y z Thus, if the Hamiltonian has this special form, the eigenfunctions of the 3D Hamiltonian are just products of the eigenfunctions of the 1D Hamiltonian and the situation is equivalent to doing three separate 1D problems....
View Full Document

Page1 / 10

lecture16 - 5.61 Fall 2007 Separable Systems page 1 QUANTUM...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online