lecture36

lecture36 - 1 5.61 Physical Chemistry Lecture #36 Page...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 5.61 Physical Chemistry Lecture #36 Page NUCLEAR MAGNETIC RESONANCE Just as IR spectroscopy is the simplest example of transitions being induced by lights oscillating electric field, so NMR is the simplest example of transitions induced by the oscillating magnetic field. Because the strength of matter-magnetic field interactions are typically two orders of magnitude smaller than the corresponding electric field interactions, NMR is a much more delicate probe of molecular structure and properties. The NMR spin Hamiltonians and wavefunctions are particularly simple, and permit us to demonstrate several fundamental principles (about raising and lowering operators, energy levels, transition probabilities, etc.) with a minimal amount of algebra. The principles and procedures are applicable to other areas of spectroscopy-- electronic, vibrational, rotational, etc. but for these cases the algebra is more extensive. Nuclear Spins in a Static Magnetic Field For a single isolated spin in a static magnetic field, the contribution to the energy is: H = m B i i = I B 0 0 where is called the gyromagnetic ratio. If we choose our z axis to point in the direction of Energy the magnetic field then: H = m B = I B 0 z 0 z 0 If we assume the nuclear spin is (As it is for a proton) then we can easily work out the energy levels of this Hamiltonian: 1 1 E = 2 B 0 2 0 where = B 0 is called the nuclear Larmor frequency (rad/sec). Now, nuclei are never isolated in chemistry they are always surrounded by electrons. As we learned for the hydrogen atom, the electrons near the nucleus shield the outer electrons from the bare electric field produced by the nucleus. Similarly, the electrons shield the nucleus from the bare electric field we apply in the laboratory. More specifically, the electron circulation produces a field, B opposed to B 0 and of magnitude equal to B 0 where is a constant. bare nucleus with nucleus electrons Thus, the effective field, B , at the nucleus is B 0 B (1- ) B = (1 ) B 0 Note that is different for each chemically different nuclear spin this is the famous h h (1 ) chemical shift and permits resolution of lines in NMR spectra corresponding to chemically different sites. The Hamiltonian is modified accordingly H = m B ( 1 ) = I B ( 1 ) 0 z 0 z 0 Zero Field High Field Thus, instead of seeing a magnetic field of magnitude B , a proton in a molecule will see a 5.61 Physical Chemistry Lecture #36 Page 2 magnetic field of magnitude (1- ) B 0 and the associated Hamiltonian and spin state energies will become: 1 1 E = 2 B 0 ( 1 ) 2 0 ( 1 ) This is illustrated in the figure above. Note the sign of the Hamiltonian is chosen so that the state (spin parallel to B ) is lower in energy than the state ( spin antiparallel to B )....
View Full Document

Page1 / 10

lecture36 - 1 5.61 Physical Chemistry Lecture #36 Page...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online