HLRGAATPreISM_35799X_03_ch3

HLRGAATPreISM_35799X_03_ch3 - Chapter 3 Polynomial...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 3: Polynomial Functions 3.1: Comple x Numbers 1. The complex number can be written . (a) The real part is 0. (b) The imaginary part is . (c) The number is pure imaginary. 2. The complex number can be written . (a) The real part is 0. (b) The imaginary part is 3. (c) The number is pure imaginary. 3. The complex number can be written . (a) The real part is . (b) The imaginary part is 0. (c) The number is real. 4. The complex number can be written . (a) The real part is . (b) The imaginary part is 0. (c) The number is real. 5. The complex number is written in standard form. (a) The real part is 3. (b) The imaginary part is 7. (c) The number is nonreal complex. 6. The complex number is written in standard form. (a) The real part is . (b) The imaginary part is 4. (c) The number is nonreal complex. 7. The complex number can be written . (a) The real part is 0. (b) The imaginary part is . (c) The number is pure imaginary. 8. The complex number can be written . (a) The real part is 0. (b) The imaginary part is . (c) The number is pure imaginary. 9. The complex number can be written . (a) The real part is 0. (b) The imaginary part is . (c) The number is pure imaginary. 10. The complex number can be written . (a) The real part is 0. (b) The imaginary part is . (c) The number is pure imaginary. 11. True 12. True 13. True 14. True 15. False. Every real number is a complex number. 16. True 17. 18. 19. 20. 21. 22. 23. 24. ] 7 1 1 ] 100 5] 7 1 i 1 100 7 1 10 i 5 1 1 ] 4 5 5 1 i 1 4 5 5 1 2 i ] 1 ] 95 i 1 95 ] 1 ] 39 i 1 39 ] 1 ] 225 i 1 225 15 i ] 1 ] 400 i 1 400 20 i 1 ] 169 5 i 1 169 5 13 i 1 ] 100 5 i 1 100 5 10 i 1 10 0 1 1 10 i 1 ] 10 1 7 0 1 1 7 i 1 ] 7 ] 1 3 0 2 1 3 i ] i 2 3 1 7 0 1 1 7 i i 2 7 ] 8 ] 8 1 4 i 3 1 7 i 2 2 2 2 1 0 i 2 2 π π 1 0 i π 0 1 3 i 3 i ] 9 0 2 9 i ] 9 i
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 0 50. 51. 52. 53. 54. 55. 56. 1 2 1 i 2 2 5 1 2 1 i 21 2 1 i 2 5 4 1 2 i 1 2 i 1 i 2 5 4 1 4 i 1 1 ] 1 2 5 3 1 4 i 1 ] 3 1 2 i 2 2 5 1 ] 3 1 2 i ] 3 1 2 i 2 5 9 2 6 i 2 6 i 1 4 i 2 5 9 2 12 i 1 4 1 ] 1 2 5 5 2 12 i 1 1 1 3 i 2 2 5 i 2 5 2 2 5 i 1 6 i 2 15 i 2 5 2 1 i 2 15 1 ] 1 2 5 17 1 i 1 2 1 4 i ] 1 1 3 i 2 5] 2 1 6 i 2 4 i 1 12 i 2 2 1 2 i 1 12 1 ] 1 2 14 1 2 i 1 ] 2 1 3 i 4 2 2 i 2 8 1 4 i 1 12 i 2 6 i 2 8 1 16 i 2 6 1 ] 1 2 2 1 16 i 1 2 1 i 3 2 2 i 2 5 6 2 4 i 1 3 i 2 2 i 2 5 6 2 i 2 2 1 ] 1 2 5 8 2 i 1 7 1 9 i 2 1 1 1 2 2 i 2 1 1 ] 8 2 7 i 2 5 1 7 1 1 1 1 ] 8 22 1 1 9 1 1 ] 2 2 1 1 ] 7 i 5 0 1 0 i 5 0 1 ] 6 1 5 i 2 1 1 4 2 4 i 2 1 1 2 2 i 2 5 1 ] 6 1 4 1 2 2 1 1 5 1 1 ] 4 2 1 1 ] 1 i 5 0 1 0 i 5 1 ] 4 2 i 2 2 1 2 1 3 i 2 1 1 ] 4 1 5 i 2 5 1 ] 4 2 2 1 1 ] 4 1 1 ] 1 2 3 1 5 2 i 10 1 i 1 2 2 5 i 2 2 1 3 1 4 i 2 2 1 ] 2 1 i 2 5 1 2 2 3 2 1 ] 2 1 1 ] 5 2 4 2 1 2 i 5 1 2 10 i 1 9 2 5 i 2 2 1 3 i 2 6 2 5 1 9 2 1 ] 6 1 1 ] 5 2 3 2 i 5 15 2 8 i 1 3 2 8 i 2 1 1 2 i 1 4 2 5 1 3 1 4 2 1 1 ] 8 1 2 2 i 5 7 2 6 i 1 ] 3 1 5 i 2 2 1 ] 4 1 5 i 2 5 1 ] 3 2 1 ] 4 1 1 5 2 5 2 i 5 1 1 0 i 5 1 1 ] 2 1 3 i 2 2 1 ] 4 1 3 i 2 5 1 ] 2 2 1 ] 4 1 1 3 2 3 2 i 5 2 1 0 i 5 2 1 4 2 i 2 1 1 2 1 5 i 2 5 1 4 1 2 2 1 1 ] 1 1 5 2 i 5 6 1 4 i 1 3 1 2 i 2 1 1 4 2 3 i 2 5 1 3 1 4 2 1 1 2 2 3 2 i 5 7 2 i i 2 1 9 1 5 i 2 1 9 3 1 ] 12 ? 1 ] 6 1 8 5 i 1 12 ? i 1 6 1 8 5 i 2 1 12 ? 1 6 1 8 5 i 2 1 72 1 8 5 i 2 1 8 ? 1 9 1 8 5 1 ] 6 ? 1 ] 2 1 3 5 i 1 6 ? i 1 2 1 3 5 i 2 1 3 ? 1 2 ? 1 2 1 3 5 i 2 1 2 ? 1 2 1 1 4 2 1 ] 40 1 20 5 i 1 40 1 20 5 i 1 20 ? 2 1 20 5 i 1 20 ? 1 2 1
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/24/2011 for the course MATH 1310 taught by Professor Marks during the Spring '08 term at University of Houston.

Page1 / 92

HLRGAATPreISM_35799X_03_ch3 - Chapter 3 Polynomial...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online