emlectures2

emlectures2 - 8 Lorentz Invariance and Special Relativity...

This preview shows pages 1–3. Sign up to view the full content.

8 Lorentz Invariance and Special Relativity The principle of special relativity is the assertion that all laws of physics take the same form as described by two observers moving with respect to each other at constant velocity v . If the dynamical equations for a system preserve their form under such a change of coordinates, then they must show a corresponding symmetry. Newtonian mechanics satisfied this principle in the form of Galilei relativity, for which the relation between the coordinates was simply r ( t ) = r ( t ) v t , and for which time in the two frames was identical. However, Maxwell’s field equations do not preserve their form under this change of coordinates, but rather under a modified transformation: the Lorentz transformations. 8.1 Space-time symmetries of the wave equation Let us first study the space-time symmetries of the wave equation for a field component in the absence of sources: parenleftbigg 2 1 c 2 2 ∂t 2 parenrightbigg ψ = 0 (404) As we discussed last semester spatial rotations x k = R kl x l are realized by the field transfor- mation ψ ( x ,t ) = ψ ( x ,t ) = ψ ( R 1 x ,t ). Then k ψ = R 1 lk l ψ = R kl l ψ , and the wave equation is invariant under rotations because 2 is a rotational scalar. If we have set up a fixed Cartesian coordinate system we may build up any rotation by a sequence of rotations about any of the three axes. Instead of specifying the axis of one of these basic rotations, it is more convenient to specify the plane in which the coordinate axes rotate. For example, we describe a rotation by angle θ about the z -axis as a rotation in the xy -plane. x = cos θ x sin θ y , y = sin θ x + cos θ y . (405) Then it is easy to see from the properties of trig functions that 2 x + 2 y + 2 z = 2 x + 2 y + 2 z , (406) under a rotation in any of the three planes, and through composition under any spatial rotation. There must be a similar symmetry in the xt -, yt -, and zt -planes. But because of the relative minus sign we have to use hyperbolic trig functions instead of trig functions: x = cosh λ x + sinh λ c∂t , c∂t = + sinh λ x + cosh λ c∂t (407) The invariance of 2 x 2 /c 2 ∂t 2 under this transformation then follows. Clearly there are analogous symmetries in the yt - and zt -planes. These transformations will replace the Galilei boosts of Newtonian relativity. 82 c circlecopyrt 2010 by Charles Thorn

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Now let us interpret this symmetry in terms of how the coordinates transform: x = x cosh λ ct sinh λ γ ( x vt ) (408) ct = ct cosh λ x sinh λ γ ( ct vx/c ) (409) where v = c tanh λ . From the identity cosh 2 = 1 tanh 2 , we see that γ cosh λ = 1 / radicalbig 1 v 2 /c 2 . We see from the first equation that the origin of the primed coordinate system x = 0 corresponds to x = vt which means that the origin of the primed system is moving on the x -axis at the speed v . We say that the primed system is boosted by velocity v = v
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern