{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

hw10_sol

hw10_sol - ENGINEERING MECHANICS STATICS 2nd Ed W F RILEY...

This preview shows pages 1–6. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-83 The plate shown in Fig. P6—83 is supported in a horizontal position by two hinges and a cable. The hinges have been properly aligned; therefore, they exert' only force reactions on the plate. Assume that the hinge at B resists any force along the axis of the hinge pins. Determine the reactions at supports A and B and yum the tension in the cable. SOLUTION From a free—body diagram for the plate: moment equilibrium: x W) + (F (FA/B x N) (20 i) x (ij + A22) + (-5 i + 20 3) x (-0.8660TCD j + 0.5000TCDE) (10 i + 10 j) x (-100 E) + (25 i + 20 j) x (-300 E) x K) + (PC/B x TCD) + (F (3/8 E/B (IOTCD - 7000) T + (2.500TCD - 20Az + 8500) 3 + (4.330TCD + 20A ) E = 6 Y From which: = 700 lb TCD = —606.2 E + 350.0 3 lb 512.5 lb 3 513 lb a —606 i + 350 3 lb _. -151.55 lb 2 —151.6 lb A = —151.6 3 + 513 E lb force equilibrium: K+B+TCD—W—P AV 3 + AZ 2 + Bx i + By 3 + Bz E - 606.2 3 + 350.0 E - 100 E — 300 E B i + (-151.55 + By - 606.2) 3 + (512.5 + 32 — 50) ﬁ = 0 X which: Bx = 0 By = 757.75 8 758 lb B = -462.5 z -463 1b 3 = 753 3 - 463 E'lb Z W. F. RILEY AND L. D. STURGES ENGINEERING MECHANICS - STATICS, 2nd. Ed. 6-85* The plate shown in Fig. P6—85 weighs 200 lb and is supported in a horizontal position by a hinge and a cable. Determine the reactions at the hinge and the tension in the cable. SOLUTION Tc = TCeC/B T [ -12 i — 24 i + 20 E C (-12)2 + (—24)2 + (20)2 A = —0.3586TC 1 - 0.7171TC J + 0.5976TC E From a free—body diagram for the plate: SE = C + (F A A G/A x W) + (rB/A x Tc) = MAX 1 + MA: E + [(14 i) x (—200 E)] + [(26 i + 11 3) x (—0.3596TC i — 0.71711C 3 + 0.5976TC E)] = (M + 6.5736TC) 1 + (2800 — 15.5376TC) J + (MAz — 14.7000TC) E = ﬁ Ax Solving yields: i + MA E = —1185 i + 2649 E in.-lb ' Ans. A Ax z T = 180.21 lb a 180.2 lb T = 180.21(—0.3586 i - 0.7171 3 + 0.5976 E) = -64.62 i — 129.22 3 + 107.69 E 1b 2? = K + TC + W = A i + AY j + Az E — 64.62 i - 129.22 3 + 107.69 E - 200 E = 6 X A = (Ax - 64.62) i + (Ay — 129.22) J + (Az — 92.31) E = U K = 64.62 i + 129.22": + 92.31 E 3 64.6 i + 129.2 3 + 92.3 E lb - - Ans. A = /(64.62)2 + (129.22)2 + (92.31)2 171.45 lb 3 171.5 lb ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-87* The plate shown in Fig. 96—87 weighs 150 lb and is supported in a horizontal position by two hinges and a cable. The hinges have been properly aligned; therefore, they exert only force reactions on the plate. Assume that the hinge at B resists any force along the axis of the hinge pins. Determine the reactions at supports A and B and the tension in the cable. F¢.Pas7 SOLUTION c c 01c 2 2 2 {(20) + (-22) + (18) = 0.5754TC i — 0.6330TC j + 0.5179Tc E _ . A _ 20 i - 22 “ + 18 t T T e — Tc From a free—body diagram for the plate: For moment equilibrium: (relB x TC) + (I'MB x A) + (rG/B x W) [(3 i + 22 j) x (0.5754TC i - 0.6330TC 3 + 0.5179TC E)] [(24 i) x (AV 3 + A2 E)] + [(12 i + 11 3) x (—150 E)] (11.3938TC — 1650) i + (-4.1432TC - 24Az + 1800) 3 + (-17.72stC + 24Ay) E = a ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-87 (Continued) Solving yields: = 144.82 lb § 144.8 lb TC TC = 144.82(0.5754 i - 0.6330 3 + 0.5179 E) 83.33 i - 91.67 3 + 75.00 E lb 106.98 lb \$0.00 lb ‘ = 106.98 3 + 50.00 E lb 9 107.0 3 + 50.0 E lb A = {(106.98)2 + (50.00)2 = 118.09 lb 3 118.1 lb For force equilibrium: 2? =.K + B + TC + W = 106.98 3 + 50.00 E + 8x i + By 3 + 82 E + 83.33 i — 91.67 3 + 75.00 E - 150 E = (8x + 83.33) i + (By + 106.98 - 91.67) 3 + (82 + 50.00 + 75.00 - 150.00) E = 6 +ByJ+BzE 1 — 15.31 3 + 25.00 E 1b a -83.3 i — 15.31 3 + 25.0 E 1b B = /(-83.33)2 + (-15.31)2 + (25.00)2 = 88.34 1b a 88.3 lb ENGINEERING MECHANICS - STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-91* A bar is supported by a ball-and—socket joint and two cables as shown in Fig. P6—91. Determine the reaction at support A (the ball- and-socket joint) and the tensions in the two cables. SOLUTION _ —22 i + 24 i + 16 E B /(-22)2 + (24)2 + (16)2 A = -0.6064TB i + 0.6616TB J + 0.4411TB E C C T a = Tc[ -56 1.— 14 1 + 24 E J {(-56)2 + (-14)2 + (24)2 = -0.8958TC i - 0.2239TC 3 + 0.3839TC E From a free-body diagram for the bar: For moment equilibrium: (F x P) B/A x Ta) + (rC/A x Tc) +‘(rE/A [(24 3~+ 16 E) x (-0.6064TB i + 0.6616TB j + 0.4411TB E)] [(-14 j + 24 E) x (-0.3958Tc i - 0.2239TC j + 0.3839TC 2)] [(38 i) x (—500 E)1 (-9.7024TB — 21.49ngC + 19,000) 3 + (14.5536TB — 12.5412Tc) E = 6 ENGINEERING MECHANICS * STATICS, 2nd. Ed. W. F. RILEY AND L. D. STURGES 6-91 (Continued) Solving yields: 548.31 lb a 548 lb 636.31 lb ¥ 636 lb TB 548.3l(—0.6064 i + 0.6616 3 + 0.4411 E) = -332.49 i + 362.76 3 + 241.86 E lb 636.31(-0.8958 i - 0.2239 3 + 0.3839 E) = —670.00 3 ~ 142.47 3 + 244.28 2 lb For force equilibrium: 2? = RA + TB + TC + ﬁ = (RAX - 332.49 — 570.00) 1 + (RAY + 362.76 - 142.47) J + (RA: + 241.86 + 244.28 - 500) 2 = 6 J + RA2 ﬁ ...
View Full Document

{[ snackBarMessage ]}