{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 3 less HW solution

# Chapter 3 less HW solution - Chapter 3 Plates Subjected to...

This preview shows pages 1–4. Sign up to view the full content.

Chapter 3 Plates Subjected to In-plane Forces 1. Derivation of Airy’s Stress Function, 2-D From equations of equilibrium, we have (by crossing out the third row and column) ( 29 0 no body force 0 xy x y yx x y y x τ σ σ τ + = + = (3-1) From the 2-D compatibility equation in terms of stress, we have ( 29 ( 29 ( 29 2 2 2 2 2 2 1 0 xy y x x y x x y y τ σ μσ μ σ μσ - - + + - = ∂ ∂ (3-2) Assume arbitrary functions R and S , such that ( 29 ( 29 ( 29 ( 29 , , and , , y x yx xy S x y R x y y y S x y R x y y x σ σ τ τ = = = - = - (3-3) Since ( 29 ( 29 , , xy yx R x y S x y x y τ τ = = (3-4) Assume and R S y x φ φ = = (3-5) From Eqs. (3-4) and (3-5), it follows 2 2 x y y x φ φ = ∂ ∂ ∂ ∂ (3-6) From Eqs. (3-3), (3-4), and (3-5), it follows 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 2 2 2 2 , , and x y xy y x x y φ φ φ σ σ τ = = = - ∂ ∂ (3-7) where φ is called Airy’s stress function after George Biddell Airy (1801-1892). Substituting Eq. (3-7) into Eq. (3-2), yields 4 4 4 4 2 2 4 2 0 x x y y φ φ φ + + = (3-8) Eq. (3-8) is called a biharmonic equation, sometimes written as 2 2 0 φ ∇ ∇ = . Boundary Forces and Airy’s Stress Function where , x y =boundary traction (externally applied surface load)/unit area (unit width, see Timoshenko Theory of Elasticity, 2 nd ed., page 13). Consider equilibrium of the infinitesimal triangular prism. 0 and 0 x x yx y y xy F x ds dy dx F y ds dx dy σ τ σ τ = = - - = = - - (3-9) Dividing Eq. (3-9) by ds , gives cos sin sin cos x yx x yx y xy y xy dy dx x ds ds dx dy y ds ds σ τ σ α τ α σ τ σ α τ α = + = + = + = + (3-10) dy y s y α ds xy τ ( 29 τ ( 29 σ n dx - y x yx τ α 0 x s x x x 0 x y σ x σ g g g 2
In traversing ds from 0 to s (counter clockwise positive for the right hand coordinates system), x decreases in the first and second quadrants and dx will be negative. Substituting Eq. (3-7) into Eq. (3-10), yields 2 2 2 2 2 2 2 2 2 2 2 2 cos sin sin cos dy dx x y x y y ds x y ds dx dy y x x y x ds x y ds φ φ φ φ α α φ φ φ φ α α = - = + + ∂ ∂ ∂ ∂ = - = - - ∂ ∂ ∂ ∂ (3-11) The x and y and the perimeter coordinate s are related as ( 29 ( 29 x f s y f s = = (3-12) Recalling the following chain-rule expansion: ( 29 , dF x y F dx F dy ds x ds y ds = + Similarly, d dx dy ds y x y ds y y ds φ φ φ = + Therefore (see Timoshenko, Theory of Elasticity, 2 nd . ed., page 190), 2 2 2 2 2 2 d dx dy x ds y x y ds y ds d dx dy y ds x x ds x y ds φ φ φ φ φ φ = + = ∂ ∂ = + = - ∂ ∂ (3-13) Let h be the thickness of the plate, then (remember force/unit area x = ). Then 0 0 1 1 or s d x d xds xds C ds y h y h y h y φ φ φ φ = = = +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}