{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Fall2010-F - ESE 271 Final Exam Name Fall 2010 ID Number...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ESE 271 Final Exam Name: Fall, 2010 ID Number: Each problem is worth 25 points. Do not write your answers on this cover page. Prob. 1: Prob. 2: Prob. 3: Prob. 4: Prob. 1; This circuit is in the AC steady state. Do a modal analysis to find the node voltage v1(t) as a. cosinusoid. 2 (I (t) waif: fleck Pharar ?an'tlig'e-$ are ant: P f Augean around ZI, dependent Vaitu,e source. at a. 3-V . ’ V‘V =2]; 37' _.'=' 6J—2Jll/ IWJI('QIE ballogn; ' a J N. baffle». kc; m, 2 V4,? V‘v V2 4- .Lgp- + ’1 i z lg”? -3v, + ,4 J J 'J Thin) S‘t'mrjg'fte: fa - 3 (3 3": + V2 J Ad4 Oquut’m‘ti‘ Q) and @1 V(;+J'3) =J‘7‘ ' 0 50, JQ 7Z?a° ’ Q'y‘f‘é /’¢ Prob. 2: Determine Z L so that the average power dissipated in Z L is a maximum. Then, assuming that Z L is a resistor in series with either an inductor or a capacitor, determine the value of those elements. Finally, determine the maximum average power dissipated in Z L. ._L_a UL 5- rfiu’j l A I 2L” J— H J’ FINAL”) 2 if 9 [Voci 4-57 I M 2 .0525— W F ~" / ' fl /6 Prob. 3: Using the Laplace transform and using the mesh currents shown, find i1(t) for 0 < t < 00 All initial conditions are 0 at t = 0+. (Kt) "alts TRANSFonnen (mun-r,- THEREFOR}, A» I I2: @--—-*> A»! I<VL Areowvo OVH'D‘ ‘D’P’ 1: _ v, '9' I, + ’51.? + T - 0 I, + (“+7013 =/ '— 2 \ 3)“ ®/ 1., + ffljjifimz, :f A A”! :3, I ‘ AvI — A +- “Q. ’ ‘ 4(A-H) ‘ A ’H A:- 3:“ 2 / 76m; Prob. 4: Determine the convolution f(t) of the two functions g(t) = tu(t) and h(t) : e"‘(cost)u(t): N) = gmxha) 2? MEN.— (( ) l H ) 4"." 4+! " = -— {A : M = .l _____.. 7 42 “HOW-I (A + I—J)(A+I+J) A+I 1—7») : W A," {A +1 —j)(A +1 +j) *- B A A B M FrA): A: 4‘ Ai +A+l—J + A+I+J A+I ' A2 - (A+/)‘+/ " 2 4:0 A °’ W“ - = a 2 I‘ JA- [A+/)2+I AID — ((A+')L+/) [OI—:0 B * A?" I :: A‘IAH-r-J) ’33.”; 44 7;- ) M? 8:70 t- 50’ 2‘ 218,53-“ ca—t(pf+m¢3) (H) ~ ‘2" + 01:! ,p= r ' “t (aw-70") {(2‘) = ‘3" +39 CW Prob. 4: Determine the convolution f(t) of the two functions g(t) = tu(t) and h(t) : €“(Cos t)u(t): f0) = g(t)xh(t) :7 , EN“- ‘ 4+! (7‘(4): .1... : 4+ = I. . 5‘0) 42+] .. W FM) ~ 4(1)“ ’j)(/-‘f’+J) as B Fax): A: —+ ’6' +——~o———-A+"J + A+I+J A+I I A2 - (A+/)‘+/ “ 2 4:0 ‘4 A“ (AMY-H -(,A+/)2/A+,) : 0 A) ‘ (IA- [A+I)1+I AID ((A+I),_+I)z flip b = A?" I :: A2{A+’ +J.) A124,” 4 ,8): '47,.— ) an? ’3: 70 So _o(fw(pt+wa) )fn) - ~11 + 2/818 2 «=1 , [3 = NH = 3- rée’tmhmw) 2 ...
View Full Document

{[ snackBarMessage ]}

Page1 / 6

Fall2010-F - ESE 271 Final Exam Name Fall 2010 ID Number...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online