{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

bfinalsoln_10

# bfinalsoln_10 - Physics 9B-C Final Exam Solutions Cole UC...

This preview shows pages 1–2. Sign up to view the full content.

/5 A ƒ = 2 π Physics 9B-C Final Exam Solutions Cole, UC Davis 20 points per problem/160 points total [1] (a) remain the same (b) slope (c) particle (d) halve (e) latent heat (f) negative (g) top (h) 0 (i) hotter (j) odd. [2] a) (5 pts) For a wave traveling to the left y t = v y x . õ y t v y x = 0 b) (15 pts) Making the substitution u   =    kx    +   ∑ t so that : y x = dy du u x = k dy du and y t = dy du u t = + ω dy du . Plugging into y t v y x = 0 õ ω dy du v k dy du = 0 . v = /k , so ∑   - ∑   = 0. [3] a) (10 pts) P = F y x y t Find the force: v = F μ õ F = μv 2 = (0.020 kg/m)(80 m/s) 2 F = 128 N. Find the derivatives: y x = kA sin kx kvt ( ) ; y t = kvA sin kx kvt ( ) where k = 2 π λ = 5.24 m -1 Subbing into the power: P = Fk 2 vA 2 sin 2 kx kvt ( ) = = 128 N ( ) 5.24 m 1 ( ) 2 80 m/s ( ) 0.03 m ( ) 2 sin 2 5.24 m 1 ( ) x 419 s 1 ( ) t ( ) = P = 253 W ( ) sin 2 5.24 m 1 ( ) x 419 s 1 ( ) t ( ) b) (3 pts) At maximal displacement the slope of the string is zero, so P y x = 0 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}