exam2003sol - 5o 1 For a non-homogeneous system of 5...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5o 1. For a non-homogeneous system of 5 equations in 14 unknowns, answer the following three questions: 1 L4 0 Can the system be inconsistent? / W4 5— ! ] 0 Can the system have a unique solution? w . 0 Can the system have infinitely many solutions? rap” A. No, Yes, Yes. B. Yes, Yes, No. Yes, No, Yes. . No, No, Yes. E. Yes, Yes, Yes. F. No, Yes, No. 3 5 s '1 2 —1 1 2, 1 «1+ 2- Compute the determinant I”: _01 fi _ ‘1?) 7------—+ 1 0 3 2 l 6} a '7. A.6 I B.—6 [email protected] 09'er 3 g 3 I I I D. 12 :: 1 o t 3 1 E. 18 3 I L! 0 ,.. I F. -18 l 5 "L o . 2 I 7'47 3. The vectors 1&1 (1,2,4),u2 (2,—3, 1), and 1:3 (2, 1,—1) are orthogonal. Find the Fourier coefficients of o 2 (3, 5, 2). That is, find (a1, a2, 0.3) such that 'v = (1111.1 + 62152 + (13113. a4: ((-,1,<p)'(3,$;1)__ 3+{0+8= f (+CF—f-(é cu a2 -_- (4,*?,4)»(2,52) : game: ,5 4+?+r :4 M 1 l 2 4. Suppose A = l 0 1 Which one of the following statements is true '? 2 1 4 ILA—1 doesnotexist. '54 1 l I O 0 The third row of A“ is (—1, -1, 1). C.ThesecondrowofA‘1is(1,2,—l). l O I O 1 o D. Thefirstnowofzél'1 is (2,0,—1). ‘9“ 1 [4 O O f U E. The second column of 44*1 is 2 . -1 N [ o p o r 0 F.EachofB,C,D,Eistrue. o I 1 l -l 0 O I 7. 0*2 I r” S {u 4 0 I o f 0 [00 9? F“? m 0 I I (F.( o (v 010 *2 0 “"1 ' oo 1 ‘{ ——-( f o O l 44-1 -_ 5. 6. Which of the following are bases of R3 ?: l a l f O ‘l {9 (1) {(1! 0: I), (0: 4! l): (—4: _4s I 0 q I {(11 1: 1)1(3: _1'.I 2)! (Us 4! (0 Ll N ~ 0 (l' 19 3)! (35 1: _3)! (4: 2! f q -‘~{ cl 0 ‘44 0 0 [1 A. (2) and (3) : z @831???) ‘ (a) hwy/«5 a( (R? . 0111; (3) o E. (1) and (2) H F. None of these sets is a basis of R3. (-1) t l A I t 3 fl 1 "V O we —I o Lg l 0 q i If A is a 6 X 9 matrix, then the column vectors of A cl A. span a space of dimension 6 B. span a. space of dimension 9 eHess C. are always linearly independent I I, D. are sometimes linearly dependent/'5 3mm ska/w M 0} 7 of mm are always linearly dependent ‘/ . span a Space of dimension 54 at" m” 7. What is the dimension of the subspace of R4 spanned by (1, —1, 4, —5), (2, 1, 5, —1), (0, 1, —I, 3) and([’-'[/lno)? g“? (vaf-~§ 7{-I 4'”; - Elf _ 0 13;” 0 3 “3 6’ F‘5 I O 1*! 3 “/ 4 0 / 0 0 -0 5: ~1—-l<{~f ” 223$? WWW-w” m 8. Suppose V is vector space and that the set {'01, . . . '07} of non-zero vectors spans V. Which fth fll ' t t ? m.—-—-—— o e o owmgs a ements are TRUE I“ Adm V2] (1) dimV=7 mr- WW3 P _ ‘ pat/Mng (II) Any 8 vectors in V are linearly [email protected] 7: (III) V has a spanning set with 8 vectomfl ((9. {an I .. , 0;, 1),} (IV) V has a linearly inde endent set with 6 vectors (V)Igdimvg7 @ ‘9me dr'xm V26, A. I and II. um. dag P B. II and III. II, III and v. . II and III. E. II, IV and v. F. I, III and V. 4M‘ 18 —7 352203] Merv/8+3 / = [ 8 —3-|, there is an invertible matrix P such that P—1A2003P is: 31v9~5é+9v r8 4% c at») ’2- = (9 HM» 4) i i [ [fig] A uw%a¢.+2r4 [ [ :befl-P: :Z O [a 43 M7 M W @WW -.-. [2515,30 Qua-30.... a 1:- - O 601“ _ o *1 10. Which of the following formulae define a. linear transformatiou T : R2 —+ R3? (1) T($,y)=($—y.ya$+1) X 7-620) 1? T (0.0%)) 0. TON) (11) They) = ($,y,w+y) / (210“) ‘7’: = 69/0, 0/ (111) They) = (wyway) X _ A.Iand II. Wort): (0,44) 3‘ CL” A, Mi 3113:5531 W = (W) @333 70,4) = (4 Mat T((r°’+T(0:4) £72) (dam .111 only. MAE 1“ WWW 5? *I If; (I j '1 11. Suppose p and q E R, A = 3 Z a.) Find rankA and rank[A I b] for all values of p and q. f b) Find all p so that the column Space of A, col (A), is R3. .. a” c) Find all p and q so that b g; col (A) ' 3 01) Find all p and (1 so that the system A3 = b has infinitely many solutions. I- S—e) In case (d) above, give a. complete geometric description of the set of solutions. ’a1~(’31 { lot *8 [-012 [or L N *6 N Oil 2 319 “I 0 313-3 T6 0 0P“; was {i E; :ii § 0’ [email protected]_ (-7 31 PM o—rqsoEGD 4») ciIAVflE —- f; 6 c) tw£fiflea [H5] 41" mover/ed 6:) MWan-JA <53) f=édz7£~0 ' . .‘:__‘_:_I.;_‘....__.fi .I ....._:f.:;.. I.; _-,.-_ _.. __... .L ._:‘__._*_._._ _ _-_:-_.--._.:.:‘--.-'.w..-«_ -__.5;-_ 12. LetU={(a:,y,z)eR3 |x+y——z=0}.. {, f 8.) Find a. basis of U and give the dimension of U. / , S‘b) Find on orthogonal basis of U. L5" 0) Find the best approximation to (0, 1,0) by vectors in U. 1' f d) Extend your basis of U in (b) to an orthogonal basis of R3. ' gl‘ma (tiff!) J- (fD a) {$73-ng; 4) “a mag nud S‘m mm! Mo: 3 Pom a! r723. 2 —10' 13. LetA: —1 2 0. 0 0 3 / a.) Show that 1 and 3 are the eigenvalues of A. I b) Find a basis of E1 = {:12 e R3 | A3 = x}. 2 c) FmdabasisofEa={meR3lAm=3m}. g..— D. Show why your choice of P is invertible. 7 (1) Find an invertible matrix P such that P‘lAP = D is diagonal, and give this diagonal matrix a» w a a: 12> 1—2;! I 0 a '5'} {cw/K141“? .2 (54‘) N‘WW‘F”) li'if’w : 6..» (AMA-rs) w\_ wpvmp Ashg _ a) L; :WKQJM [pr/:20] 9.. 1.12%] a, [ twp] 3:: Q ’1 O o 2‘) 00° 0 ho .xpfflmo ('MJJ“) war/ng 5/ @ .._. A i J, c3951 M42?) m: w —_; In: :3] : o 000‘. OaOd-ht 2(‘lx4tw/(O’ofngqmd‘312%)150* Mil—E5 .1 H __ ’[ __. *4 ‘ (UM if [Hg] 39““ (PM)— [ogeo] . 001 005 3 19‘ Axum/man. q I}! 14. Let 1: = (1,0, 1) and w = (1,1, 1), and define a. linear transformation S: R3 —+ R3 by S(u)=ux(vxw), ueR3. / a) Show that if u = (3,9325) 6 R3, then 3(a) = S(:n,y,z) = (y, -—m — z,y). / b) Find the standard matrix of S. 1c) Find a basis of kerS and give a. complete geometric description of ker S. / (1) Find the dimension of im S. / 3) Show that {11, w} for a basis of im S. 2 J' k 3 £0) : 4-0; :- .401)- 4)4fix¢0 /{({/ (2.”): (I! @ 1‘ ( ~410—! o l D _ A M <9 mm: awn ~ [2 ‘: c1531,» {(—qu (é . 090° - d1 ‘ :aa‘waoé“): WA=Z(M(¢[email protected] A) arm—{M 04 mg.) w qu+v ,Maa we MES, MAW-um, {floong M ffichhLch-w‘é ‘5’”“Wf'h‘9/ fog; (saw wwid -w(‘/), 13 .1, Wu..-” ~- rt/W"'0l I” “W ' —— l! 15. State whether the followinger true or false. You must explain your answers. (a) If U and V are different 1-dimensional subspaces of R2, then their union UUV={wER2lwerrw€V} isalsoasubspaceofRz. WC“; («3. (A = [XGQ‘I (b) Vectors u, v and w are linearly independent if u is not a multiple of v or 11). MP: [’3' {6:640}; d)‘:0=w' \ W “L Ame/Aw; Wm M {aimleé MW. (c) If A15 3. 4 by 3 matrix and the row canonical form of A has a. row of zeros, then A3: = O has infinitely mag solutlons. fl PALS: l . J ' ~ 15 I (cont) - -- d) IfAisa12><12 matrix, and A2=—A, then detA=Oor detA=1. Rug 1— \“Lch 2f (51%, on} (ELMO-M 3—0 (MA) :9) WM "L MA at m gamma-4) avo- - (was. 1‘) If :r : R2 —t R3 is a. linear transformation, then dim(im T) 2 2. FA“; (Q'Wg‘m 7+ dim, W7— ? dirt/t4 //2.2 :91) : MMT“; £5. 72477) =- (0,020) t at ‘ flaw/L c'm T «2: 0. 16 ...
View Full Document

{[ snackBarMessage ]}

Page1 / 11

exam2003sol - 5o 1 For a non-homogeneous system of 5...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online