{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ch3summary

# ch3summary - 90 Chapter 3 Summary Exponential distribution...

This preview shows pages 1–2. Sign up to view the full content.

90 Chapter 3 Summary Exponential distribution T is said to have an exponential distribution with rate λ , or T = exponential( λ ), if P ( T t ) = 1 - e - λt for t 0. This distribution has the lack of memory property P ( T > t + s | T > t ) = P ( T > s ). The density function f T ( t ) = λe - λt for t 0 and 0 otherwise. The mean ET = 1 while the variance var ( T ) = 1 2 . Let T 1 , . . . , T n be independent with where T i = exponential( λ i ). min( T 1 , . . . , T n ) = exponential( λ 1 + · · · λ n ). P ( T i = min( T 1 , . . . , T n )) = λ i / ( λ 1 + · · · + λ n ). Theorem. Let τ 1 , τ 2 , . . . be independent exponential( λ ). The sum T n = τ 1 + · · · + τ n has a gamma( n, λ ) distribution. That is, the density function of T n is given by f T n ( t ) = λe - λt · ( λt ) n - 1 ( n - 1)! for t 0 and 0 otherwise. Poisson distribution X has a Poisson distribution with rate λ , or X = Poisson( λ ), for short, if P ( X = n ) = e - λ λ n n ! for n = 0 , 1 , 2 , . . . Theorem. For any k 1, EX ( X - 1) · · · ( X - k + 1) = λ k . Hence EX = λ and var ( X ) = λ . Theorem. If X i are independent Poissson( λ i ) then X 1 + · · · + X k = Poisson( λ 1 + · · · + λ n ) .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}