HH_12_4

# HH_12_4 - Math 10C Lecture Examples Section 12.4 Linear...

This preview shows pages 1–2. Sign up to view the full content.

(10/8/08) Math 10C. Lecture Examples. Section 12.4. Linear functions Theorem (a) (The slope-intercept equation of a plane) Suppose that the z -intercept of a plane is b , the slope of its vertical cross sections in the positive x -direction is m 1 , and the slope of its vertical cross sections in the positive y -direction is m 2 (Figure 1). Then the plane has the equation, z = m 1 x + m 2 y + b . (1) (b) (The point-slope equation of a plane) Suppose that a plane contains the point ( x 0 , y 0 , z 0 ) , the slope of its vertical cross sections in the positive x -direction is m 1 , and the slope of its vertical cross sections in the positive y -direction is m 2 (Figure 2). Then the plane has the equation, z = z 0 + m 1 ( x - x 0 ) + m 2 ( y - y 0 ) . (2) The slope-intercept equation The point-slope equation FIGURE 1 FIGURE 2 Example 1 Give an equation of the plane with slope - 6 in the positive x -direction, slope 7 in the positive y -direction, and z -intercept 10. Answer: z = - 6 x + 7 y + 10 Example 2 Give an equation of the plane through the point (1,2,3) with slope 4 in the positive x -direction and slope - 5 in the positive y -direction. Answer: z = 3 + 4(

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern