{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HH_14_1-14_2

# HH_14_1-14_2 - Math 10C Lecture Examples Sections 14.1 and...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (10/28/08) Math 10C. Lecture Examples. Sections 14.1 and 14.2. Partial derivatives † Example 1 The table below is from a study of the effect of exercise on the blood pressure of women. P = P ( t , E ) is the average blood pressure, measured in millimeters of mercury (mm Hg), of women of age t years who are exercising at the rate of E watts. (1) (One watt is 0.86 Calories per hour.) What is the approximate rate of change with respect to age of the average blood pressure of forty-five-year old women who are exercising at the rate of 100 watts? P = P ( t , E ) (millimeters of mercury) t = 25 t = 35 t = 45 t = 55 t = 65 E = 150 178 180 197 209 195 E = 100 163 165 181 199 200 E = 50 145 149 167 177 181 E = 122 125 132 140 158 Answer: P t (45 , 100) ≈ 1 . 8 millimeters of mercury per year (using a right difference quotient); or P t (45 , 100) ≈ 1 . 6 millimeters of mercury per year (using a left difference quotient); or P t (45 , 100) ≈ 1 . 7 millimeters of mercury per year (using a centered difference quotient)...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

HH_14_1-14_2 - Math 10C Lecture Examples Sections 14.1 and...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online