Ch08+Lecture

Ch08+Lecture - CHAPTER 8 Hypothesis Testing with z Tests:...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 8 Hypothesis Testing with z Tests: Making Meaningful Comparisons
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The Versatile z Table: Raw Scores, z Scores, and Percentages Benefits of standardization: allowing fair comparisons z table: provides percentage of scores between the mean and a given z score
Background image of page 2
See Appendix B.1
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Figure 8-1: The z Distribution We can use a  z  table to determine the percentages below and above a particular  z score. For example, 34% of scores fall between the mean and a  z  score of 1.
Background image of page 4
Figure 8-2: Calculating the Percentile for a Positive z Score of z = +0.98 Drawing curves helps us to determine the appropriate percentage. For a positive  z  score, add 50%  to the percentage between the mean and that  z  score to get the total percentage below that  z   score, the percentile. Here, we add 50% below the mean to the 33.65% between the mean and a  z   score of 0.98 to calculate the percentile, 83.65%
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Figure 8-3: Calculating the Percentage Above a Positive z Score of z = +0.98 For a positive z score, we subtract the percentage between the mean and that z score from the 50% (the total percentage above the mean) to get the percentage above that z score. Here we subtract the 33.65% between the mean and the z score of 0.98 from 50%, which yields 16.35%.
Background image of page 6
Figure 8-4: Calculating the Percentage at Least as Extreme as Our z Score of 0.98 For a positive z score, we double the percentage above that z score to get the  percentage of scores that are at least as extreme—that is, at least as far from the mean —as our z score is. Here, we double 16.35% to calculate the percentage at least this  extreme: 32.70%.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Figure 8-5: Calculating the Percentile for a Negative z Score of -1.82. As with positive 
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 09/30/2011 for the course PSY 3301 taught by Professor Staff during the Spring '08 term at Texas State.

Page1 / 28

Ch08+Lecture - CHAPTER 8 Hypothesis Testing with z Tests:...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online