A10_soln

# A10_soln - Math 235 Assignment 10 Solutions 1 Determine...

This preview shows pages 1–3. Sign up to view the full content.

Math 235 Assignment 10 Solutions 1. Determine whether the system is consistent, and if so, determine the general solution. (a) z 1 + (2 + i ) z 2 + iz 3 = 1 + i iz 1 + ( - 1 + 2 i ) z 2 + 2 iz 4 = - i z 1 + (2 + i ) z 2 + (1 + i ) z 3 + 2 iz 4 = 2 - i Solution: Row reducing gives 1 2 + i i 0 1 + i i - 1 + 2 i 0 2 i - i 1 2 + i 1 + i 2 i 2 - i R 2 - iR 1 R 3 - R 1 1 2 + i i 0 1 + i 0 0 1 2 i 1 - 2 i 0 0 1 2 i 1 - 2 i R 1 - iR 2 R 3 - R 2 1 2 + i 0 2 - 1 0 0 1 2 i 1 - 2 i 0 0 0 0 0 Hence, the system is consistent with two parameters. Let z 2 = s C and z 4 = t C . Then, the general solution is ~ z = - 1 0 1 - 2 i 0 + s - 2 - i 1 0 0 + t - 2 0 - 2 i 1 (b) iz 1 + 2 z 2 - (3 + i ) z 3 = 1 (1 + i ) z 1 + (2 - 2 i ) z 2 - 4 z 3 = i iz 1 + 2 z 2 - (3 + 3 i ) z 3 = 1 + 2 i Solution: Row reducing gives i 2 - 3 - i 1 1 + i 2 - 2 i - 4 i i 2 - 3 - 3 i 1 + 2 i R 2 - R 1 R 3 - R 1 i 2 - 3 - i 1 1 - 2 i - 1 + i - 1 + i 0 0 - 2 i 2 i R 1 - iR 2 1 2 iR 3 0 0 - 2 2 + i 1 - 2 i - 1 + i - 1 + i 0 0 1 - 1 R 1 + 2 R 3 0 0 0 i 1 - 2 i - 1 + i - 1 + i 0 0 1 - 1 Hence, the system is inconsistent.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 2. Find a basis for the four fundamental subspaces of A = 1 i 1 + i - 1 + i - 1 i . Solution: Row reducing the matrix
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

A10_soln - Math 235 Assignment 10 Solutions 1 Determine...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online