20112ee113_1_Hw7-Solution

# 20112ee113_1_Hw7-Solution - EE113 Digital Signal Processing...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EE113: Digital Signal Processing Spring 2011 Prof. Mihaela van der Schaar Homework #7 Solutions Prepared by Yuanzhang Xiao and Khoa T Phan Problems from Prof. Sayed’s lecture notes: 15.1 i) When x ( n ) = δ ( n ), we have X ( k ) = 1 , k = 0 , 1 , ··· ,N- 1 . ii) Since x ( n ) = u ( n )- u ( n- N ) = 1 0 ≤ n ≤ N- 1 0 otherwise , we have X ( k ) = N k = 0 k = 1 , 2 , ··· ,N- 1 iii) x ( n ) = δ ( n- n o ) + δ ( n- N + n o ) , n o < N X ( k ) = N- 1 X k =0 x p ( n ) e- j 2 πkn N = e- j 2 πkno N + e- j 2 πk ( N- no ) N = e- j 2 πkno N + e j 2 πkno N = 2cos 2 πk N n o , ≤ k ≤ N- 1 iv) x ( n ) =- δ ( n- n o ) + δ ( n- N + n o ) , n o < N From (iii), we see that X ( k ) =- e- j 2 πno N k + e j 2 πno N k = 2 j sin 2 πn o N k v) x ( n ) = cos 2 πk o N n , k o < N = 1 2 e j 2 πko N n + 1 2 e- j 2 πko N n X ( k ) = 1 2 N- 1 X n =0 h e j 2 πko N n e- j 2 πk N n + e- j 2 πko N n e- j 2 πk N n i = N 2 [ δ ( k- k o ) + δ ( k- N + k o ))] 1 vi) x ( n ) = sin 2 πnk o N , k o < N Similar to (v), we can show that X ( k ) =- j 2 N- 1 X n =0 h e- j 2 πn ( k- ko ) N- e- j 2 πn ( k + ko ) N i =- j N 2 [ δ ( k- k o )- δ ( k- N + k...
View Full Document

{[ snackBarMessage ]}

### Page1 / 5

20112ee113_1_Hw7-Solution - EE113 Digital Signal Processing...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online