This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CS103A HO #56 Gdel's Incompleteness Theorem 3/10/08 1 Gdel's Incompleteness Theorem Kurt Gdel (1906 1978) Gdel, Kurt (1931). ber formal unentscheidbare Stze der Principia Mathematica und verwandter Systeme I. Monatshefte fr Mathematik und Physic , 38, 173198. On formally undecidable propositions of Principia Mathematica and related systems I References: Gdel's Proof by Ernest Nagel, James R. Newman, Douglas R. Hofstadter (Editor) NYU Press; Revised edition, 2001 Wikipedia Gdel Gdel's incompleteness theorems An Introduction to Gdel's Theorems by Peter Smith Cambridge University Press, 2007 Gdel's Theorem: An Incomplete Guide to Its Use and Abuse by Torkel Franzn A K Peters, 2005 God Created the Integers by Stephen Hawking (Editor) (contains Gdel's paper) Running Press, 2007 Mathematics is deductive, not experimental The axiomatic method and the notion of logical proof goes back to the GreeksA small number of axioms and some rules of inference are used to produce all other theorems in the system It was hoped that adequate systems of axioms could be found for each area of mathematics. For example, Euclid's axioms of geometry, or Peano's axioms of arithmetic. Gdel showed that this could not be done. There are inherent limitations in such systems. Let's set the stage... Mathematical Progress in the 19 th Century The Greeks had proposed three problems in geometry that had not been solved for 2000 years: to trisect any angle with a compass and straight edgeto construct a cube with a volume twice the volume of a given cubeto construct a square equal in area to that of a given circle. In the 19th century it was proved that these constructions are logically impossible. Mathematical Progress in the 19 th Century Even more important was another problem: Euclid's fifth axiom is equivalent to the assumption that through a point outside a given line only one parallel line can be drawn. Unlike the other axioms, this did not seem selfevident to the Greeks. They tried, unsuccessfully, to deduce it from the other for axioms. In the 19 th century, the impossibility of deducing the parallel axiom from the others was demonstrated. This was important becauseit showed that it was possible to prove the impossibility of proving certain propositions within a given systemit showed that there was more to geometry than Euclid CS103A HO #56 Gdel's Incompleteness Theorem 3/10/08 2 Mathematical Progress in the 19 th Century The emergence of nonEuclidean geometries, where Euclid's axioms were not true, raised interesting questions:Were the axioms for the nonEuclidean geometries consistent? (How could you prove that they didnt lead to contradictory theorems?)Were the Euclidean axioms consistent?...
View
Full
Document
This note was uploaded on 10/01/2011 for the course CS 103A taught by Professor Plummer,r during the Winter '07 term at Stanford.
 Winter '07
 Plummer,R
 Computer Science

Click to edit the document details