6.Bandpass and Scaling

6.Bandpass and Scaling - BandpassFilters(Resonance)...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Bandpass Filters (Resonance) Parallel RLC Admitance Y(s) = 1/R + 1/sL + sC     [Y = 1/Z] Y(j ϖ ) = 1/R + 1/j ϖ L + j ϖ C = 1/R + j( ϖ C – 1/ ϖ L) [1/j = -j] Y(j ϖ )| = V o  = I s /Y,  |V o | = max when |Y| = min,   ϖ C = 1/ ϖ L,   ϖ ο  = Resonance : output = max, admittance/impedance = real Bandwidth  β  =  ϖ c2  –  ϖ c1 ,   ϖ c1 ϖ c2  are corner or half-power frequencies  where |V o | =   I s /|Y|= I s R/  |Y| =  Solve for  ϖ c1 ϖ c2  (equations in text)  β  = 1/RC Q = quality factor  =  ϖ ο  (high Q   sharp peak, low Q   broad peak) Series RLC  is dual circuit, I o  = V s /Z, Z = R + j( ϖ L – 1/ ϖ C) I o  = maximum when Z = minimum → same ϖ ο = Similar derivation of  ϖ c1 ϖ c2   β  = R/L 2 2 L 1 C R 1 ϖ - ϖ + LC 1 2 | V | max o 2 c c 2 L 1 C R 1 R 2 ϖ - ϖ + = LC 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Scaling Impedance scaling
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/02/2011 for the course ECON 223 taught by Professor Conner during the Winter '11 term at Portland State.

Page1 / 2

6.Bandpass and Scaling - BandpassFilters(Resonance)...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online