This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
This
preview
has intentionally blurred sections.
Sign up to view the full version.
Unformatted text preview: $3gxoro>ora§
Q33ao3rorfi§r
o13+y+3ozor+y+y
.6.on 3>+<+23§o
oxo1$$xoxoworov§
< xo<+133xor3+y3§r
o o: wow$<owoxowow+xo
<w<> §§o<o<+xow+w x
> >33. .0.
o: éwmwdnwnwia
+f3>§§ iiiafi Work Sampling - First used by Tippett in the British textile industryr in the
early 1930s: introduced in the US in 1940 - Also 1mm as oeeurrenee swam . since what are sampled
are oeeurrenees of 1various types of events. APPLICATIGNS: 1. machine utilization ‘ ' 2. proportion of time direct labor person
spends on indirect labor 3. to determine allowances of unavoidable delays and/or auxiliary work elements
4. to establish work standards ISSUES: .
1. horar many samples or sample sme 2. aeeuraey of estimate
3. 1When to take ample observations 5‘1 (HM! Determining: Lire frequency oi observations: AWE]: 1. stratification {cit}r as. rural. male vs. female]: sample from morning and afternoon. lot and 2nd
shift and Ellen combine data 3. influence - "worker may start working if he/she
sec iron 51n- a sampling round
3. periodicity - use random times or a random activity analysis camera
TflUE SCHEDUTE: 1. Use random fl table to etablish a sampling,r schedule
(Table ALB-4] e.g. #20 means 3G0 min after start of
the day at fl:fli}. at 11:20 take observation 2. Use computerized packages (DE. FAST] em INDUSTRIAL ENGINEERING SENIOR PROJECT WeridefCu
{2.2% Wericf'l’eicu
55.1% Pepemrerli r_ 3'?“ ' i ‘ldle
me
- - Getting Parts
““ Getting Parts ~ 13“
EJ'ii'a
Break:
H.9'ii: Break:
9.5% Talking Paperwork 1.1% Talking Idle Travel
5.29:. 3‘“ 21% 15.15; 22.2% May-1995 May-1996 Created by: University of Miami
C_Seliuan a. J.WD" l'b-E WDHK SAMPLING STUIZWII
mm“ [.15an 540;: Numlerorkmg Ihls Sluflym .. _... .__. _.__ Dale _.. _-. __._..__.__..____ Ely- _..._ ___- .. .. _. . . _. _
Remarks . .. .. _...._.._. .. .__. ._. . ._. _ _.-.... _... ......_...__ _._. _.._.___._______._._.._..__._... .._.. .. __ nnpruc lvfl' I :urmnc
Random 'Illne PEI‘CBIHJQI'.‘
NHIlll-lli‘dllllllvu Tmal Pmcemngu
Duse n-Elllnns l’rmluctlw Guru: ‘I'I'iIiI Want Cfillrfit ,
Tunis Jut: Elana Talumnl _ _
_ _ . ._ _ __
1
J!
‘_"|_ _ __ .
Ii.
-. ___ _._ ___ _____ ._ .. ___-.. ..._._= ___- _---- ____ _ ___- _ FIGLIHE 21—15
Work; sampling time study form for clarical operations 1I.leI:.il-'I"r-'«I'IEIlF'r IEPOI‘I TOTAL
{.HEIEFJGS
imfi'GTEH “EDIT
4.RLIVEI?
5. m tea-on Pl: m. .= N
a. IN — I N I: 9 :- 19 H L
1 Elm-Emu mus TAlULMrNG-Cl. EHCAL —..-.-..-.._—-_I'-. rmM_LELTo_£1L_ unk—
_.__u.__.__._...—_—._—m:u___._
HLI‘Hl 3-H SHIT-WEI?|1D|11|12|13l1£|15i16117IIPiMI LEV. flair-1PM cg. M- M q c. A”! z “'6‘! /f-£vfi-éfiflm FIGURE 21n12
UllSEWflIiDI] {arm for rucnrding uvenls on 14 Iacilit'tes during a wurk sampling sludy 1|WORK SAMPLING OBSERVATION RECORD STUDY NO. 4L_____ STUDY AREA Mum-2W5:
PLANT |:| lul:_ __REMARKS JubdulfluurJ—Lm DME 5m
OBSEMER a gym MACHINE m.
20' HEN: 1.1;“:
w M (9 33m:
23‘ MM En—
12‘ VBM
W
B" IMM
'Ifi' 'III'BM.
111' PLANER
9%" E.L.flTiIEW
Wf E.LMHE
F¢U*E.LMHE mm
H'Tft' PLNRQ 32:3;
32' VEM 9L)”; FIGURE 21—15 HVDrk sanuhnng sninnfiary Sheel M' VBM
Id‘ PLANER 16D'E.LMHE
II-L’I' PLNP. b
1H
m
lid 4.. J" ._
M F.
;. I515 1H Ull-
WJ Ll- 5.! £15 115
Elb
ilb ilk
21¢ ‘ 30$;
F.fl a IDDI XYZ ELECTRIC PRODUCTS, INC. sum" infirm: HIM-HING- am J "LHNT
fl PAI TM]: HT
NM CI" DISEIVAIIDNS ' < 4’ .1’ .aa ' ‘3“ ' ' : .‘sl \’~ at J r" g A; .9” a; 3:3: g“? a"? of" 49’ #5 *‘xr J a“; ' m“
|
5”” 'flflfllflflflmm
u;- I a. I i i ' l' I. ‘rj‘ ? a. -
’ -..........I “will. flax-I'M}? ER. Immrxme- AMI-ICES.
.511:- ma-E-tmwwmfn—Pax Willi-qs-DF Mtg-arm. Arm HAS r " a. --'I. . - .. . -l- 'i' - Ila- - .'-'I' ll' . 1 I- '._ .
7:! TH: {IF-'4 Am.
HflTE; A“ CIEEIVhl‘IflNi All: TC! IE TAKEN A'I' “NEH. 6) “Ha! I {Iti :1 Jfir‘i “Err-1n]. \A/C} IQ £91110; Am; [44.1% 521-“) J'Jmc JG ‘3' IE' Hrrd “'1
ii“.- on. MFI’NH t'J' LJI: I “(FIFTH 'f’d" ma ( -' t‘ fffif'fifllllifl-l {If I’M-'51" (.“E'tfllrf'f' 31(1’4 Hr: i‘ #11 a I ( Kai 'f Hi if Tr'c-rLI’J Jift'J wt” W1
6: “ f 0 {Fr "it.er
A luff-Fa Eu,” CLHTFIH 'L' d 3o) l-J' J fizlJtila'hdr, filmffihinr LU % Lira (EV-1116111. lift: [in 1/13: I, ll { {1 Mia.)
A a I} I 4
30 -‘ EA}; a: f z. + gall
'm‘ t E Jr W i H firm #6.} @ Wm h 1%: C11J%r| gm {J‘s-1.
“(4+ (01h (ceiffltrm'i’z (“F \{ff‘irl'itlzJI‘W {(9): Jtifjflrc Malay {in CGWFHM hint/w Mtg/u m n cl 5*“ '1 éff'}6w'}1fzrf [fir-j a J (UH cf 1H)?! firfilgimk J In- I: M‘ m a I; a?" if“
A “a. TV )1 Hr“. I91 E h n 6*». r6111 (10m. 5" 6. Hugh L 4 fl 2' I2 CO (3 éfl‘rvn'gr'cru 2 {[1 K-L-ri. J
pfl'uhtl {Th-{1+ {‘L‘C (“Pk {-FLH III/J 'm-{Ir’g “C! It: {-1 r.— H l& occurvemm ‘- FIHJ. a. q 5‘ 2L, (ca-11:: Jun: nr-i wflZ-rr-me liter ficdhwa] Ft’fl‘t’ri'lzfij E: C-Frcrorllic'ax ) 6.“: '{Jmfi {Tilri'g'
“we {wk 23%; are hi )fi; :3
‘3’26 U) [flan-mg fj'flmfi'éfi c-‘F if; j} 32 * Iii“! 1 {3:75 -- (2) (UK LET’EJ : : , {1.5" (a) PM Tame {43-3} 2 H
1“.
5-53.
:7». 001 W) rfif’ffl L’Hc- I xii—ELM}? Z; ILL-U .3253 ‘- 31:; 4 ‘33,1_ G1 J'cimrk 3;; r '4 4 3H 1- J an, [1)“ {J C'cnfin‘krf P11?- 1W5" {’11: fJ‘fH‘LHiLZi 4-?
{J'IJIH I. U2 Tffn'% {:3 (IéJFthfi’l‘g-lffl-lj
(1H iij'r'H‘iéL {Sic '1 :2 r. 55'5JL.L.:;_5) “2.45”: ELEPJ'HFFA Tad {j (23 J1 E of we
Jamfll-L {If Out" (I. %)2‘ {, 55‘3“)(,L.q5) (will {5%Hnnfc cF UHF 3” it"3‘51 J '11:? ('5': :1 {at 1' cu" c-r'l W1}!
{'1 r 11" JfimI/JJE 'kofi (7 rrgr;r+ltéfl 5:, J (1111155 :1 Jr- 121' HEEL-{'3 [206. : H
(H MMA. "mm (XJZLH'Q (.ms') W
{Nil} 1 21" w: I” a? t' T! E’ L' (m: 1.7.062] (:9th {*‘1’Ir’cx'r
x% Hf c'- r] {If (Iran? gran”; H Adi
{ 3:. I 5'
J X I H
1 ‘ .- f. :. HI
I. a“; J, A 7
(J—J‘fl) (mom = 5/5331. AM def-I “1511515515. (:1 X 10052 '- CPS—1‘71 OK: “CI-'5 '5? 5151-1111(51sz ' TABLE 5.3-3
Percentege points at the t distribution {probabilities refer to the sum ef the twe tail
areas; for a single tail. divide the probability by 2} 51m 11 probability 1:. _
1'12: [221-] I ‘1' a“: if“
i- 11 -5 5 -1 -5 -5 1 -5 2 1 m -52 -51 551 4:1 1 -155 -525 -515 -121 1-555 1-515 1-555 5-515 5511 12-155 51-521 55-551 555-515 I
2 -142 -259 *445 --512 415 1-551 1-355 1-555 2- 925 4-353 5-955 9-925 31-555-
3 152 -222 -424 -554 -255 -925 1-255 1-535 2-353 3-152 4-5-11 ‘5-541 12- 941
4 434 -221 -414 -559 -241 -951 1-195 1-533 2-132 2-225 3-242 4-554 5-515
5 -132 -252 --t55 -559 -222 -925 1- 155 1-425 2-515 2-521 3-355 4-532 5-559
5 -131 -255 454 -553 -215 -955 1-134 1-445 1-943 2-442 3-143 3-252 5-959
1 -155 -255 -152 -515 -111 -555 1-115 1-115 1-555 2-555 2-555 5-155 5-155
5 ~135 -252 -355 -545 -255 -559 1-155 1-392 1-555 2-355 2-595 5-355 5-541
9 -129 -251 -395 -543 -253 -553 1-155 1-353 1-533 2-252 2-521 3-255 4-251 15 -129 -255 -392 -542 -255 -529 1-593 1-322 1-512 2-225 2-254 3-159 4-552
11 -125 -255 -555 -515 -551 -515 1-555 1-555 1-155 2-251 2-115 5-155 1-151
12 -125 -259 -395 -539 -595 -523 1-553 1-355 1-252 2-129 2-551 3-555 4-315
13 -125 -259 -594 -535 -591 -525 1-529 1-555 1-221 2-155 2-555 3-512 4-221
14 -125 -255 -353 -532 -552 -555 1-525 1.345 1-251 2-145 2-524 2-922 4-145
15 -125 -255 -555 -555 -551 -555 1-511 1-511 1-155 2-151 2-552 2-511 1-515
15 -125 -255 -552 -555 -555 -555 1-511 1.-551 1-115 2-125 2-555 2-521 1-515
12 -125 -252 -392 -534 -559 -553 1-559 1-333 1-245 2-115 2-552 2-595 3-955
15 -121. -251 -552 -551 -555 -552 1-551 1-555 1-151 2-151 2-552 2-515 5-522
15 -121 -251 -551 -555 -555 -551 1-555 1-525 1-125 2-555 2-555 2-551 5-555
25 -121 -251 5.51 -555 -551 -555 1551 1-525 1-125 2-555 2-525 2-515 5-555
21 -122 +252 +391 -532 £55 -555 1-553 1-323 1-221 2-555 2-515 2-531 3-_519
22 -122 -255 555 -532 -555 5553 1-551 1-321 1-212 2-524 2-555 2-519 3-292
25 -121 -255 -555 552 -555 1155 1-555 1-515 1-111 2-555 2-555 2-551 5-151
21 -121 -255 -555 551 -555 1151 1-555 1-515 1-111 1-- 2-152 2-151 5115
E -121 -255 -555 -551 +551 -555 1-555 1-515 1-155 2-155 2-151 5-125
25 -121 -255 -555 -551 -551 -555 1-555 1-515 1-155 2-555 2-115 2-115 5-151
22 -122 -255 -339 -531 4534 -355 1-552-1-314 1-253 2-552 2-423 2-221 3-595
25 -122 -255 -359 -535 553 -555 1-555 1-313 1-251 2-545 2-452 2-253 3-524
29 -122 -255 -359 +535 "553 -55-1 1-555 1-311 1-559 2-545 2-452 2-255 3-553
55 -121 -255 555 555 555 -551 1555 1-515 1-551 2512 2-151 2-155 5-515
45 -125 -255 555 -529 531 -551 1-555 1-353 1-554 2521 24125 2-254 3-551
55 -125 -254 352 -522 -525 -345 1-545 1-295 1-521 2-555 2-355 2-555 3-455
125 _-125 -251 555 525 -511 515 1-511 1-255 1555 11555 2555 2-511 5-515
11: -125 -253 {155 524 -524 -542 1-535 1-252 1-545 1-555 2-325 2-525 3-251 Reprinted from Table III of R. 25.. Fisher and F. Yates, Statistical! T115155 for Biological, Agricugruraf, and
Medical! Research (Edinburgh: Oliver & Bey-d, L111}, 1111 pemdssien of the 511111515 and publishers. d 2"“ If
flair-v.71, = If“ a .313-
I rx
'- .0!
"'" :40 -
ll .Muzrr
I - Gamma!)
Jilin“ : *razqaa "lfx = "q E l a
x {.323 :7 é fwd” U59 JP Work (“60? C(fnern‘ Farm-Ala, T Tm: Nfl‘fmfil Fltmrn'iali Tntnt FT- : Ezimghafizyatr ‘ffm: rtfrflmiii R 1 FET'Furmhnu Khan) Fai‘i'flrr‘ [liar-arch: furrgsg 0x w Wk “UH {a It] dwin‘x} curry on ‘wofK alumni? 3" a"; Oczhfrtfiiti m . Him? 15
L1} mnEwmhj
ffll?hfint 30
{a} £19113 H5”
g: I90
T _ (E'J'H Hail-1.1.1]
m‘ ---—*‘—------——- 1
{we} (5") JTJ-‘Iwrmm Tm»? = IT: J0». Mr] ’FJPWJ
f‘éflnJfirJ ma 1% DWI-[hr awful? fihfily‘l‘a- aéervcé
rerluér memruwmm‘i' "J ‘J'fi-fl'ur For wuch {Jamrnf {its} F}: 25%;“): ’15-. {alarm {ha-E JO rmmJJ Wm filial-aw!“ {in ‘1' I‘ll-THYJ. Calcnlmfi {lug iaéw Jfandwi im— flab. may”): I202,
mm: amt" Tm ( i‘l' é Hch-MHI) War k Mcdttl‘flremrn'é Me'éAeJfi/ejz'u FIGURE 21—13 Distribution of work measurement methoooiogies to process lime. efiort time. second worit stoppages second delays under shop and
mass production in the metal Iredes. and Ihe epproxlmele distribution of improvement from engineering and empioyees lob'
findingfifl CU'HHQ Me'fl' ' Deioys. Wort: E'rtopoogeJ Dfltm‘ Lorge Botclh . u - -:
and Most. Production C””'"‘J Mei“ I'D-slew. Weri Steeeeecr Other Production Type of Work Sumpring or
Anolytimi Teeltnigues Work Measuremenl Standard Data or
i‘t-"IeIitodohear,r Fundamenlol MroHon Data Industrial and Production Engineering Principal Source
ol Improvement Hrrhtfirrrrit‘ht‘rt th' I’rrrfi‘tmr K. Kain” Li}:- 1 NTKOL (HAKTJ' Efifimfiifi id QEFHTFHE
Z”! OCqurrnre l4 3 Z, Deflr'ltw‘e I‘m RMJM1£ ‘4
Final 1H a": Oéiervflt’é“ 7-3.5“; 4*. 51" A d‘r Ofimrfmr: l4 flwrrwfidnl 1 LI (“I 5%.!1' {0&5‘
Z (P 3313
3 7 7'7 .434!
if '7' (‘0 4'33
5 5 51 £96,.
4; "I 73 .055'
ft: 29 =32:
7; ({Effr‘mgfli f”) w": 35H aéit'r‘anr'MJ
I:— 23/ ~ = (:73
33! I .j‘m 'Ew' $51 if: '72; c/f‘LlfrmEnt {rt-W 0;} 1 m whfff m 45,5-
‘ ' ' / Ir8£)_
‘ It J'I‘EQ er grim! ((1 Ibélfim/ a ..
{he fiverqele JOIMIO ’0 r
m: 1.3.!— : d 5. flgl'rrfli {Hui/ffch
' (oferu'ii
6;} '1 1:. ’ gygé
(93-5
Far {3 Cl (rmfiixnr: In‘Iln-wml“) J 0&1; 05. 1; 231,2: é f+£g;£[)_f:é .6173 + NH. (16326:) {A 4m a .u?3+i.%(:531¢! ’- A f
f
A 4 Jam IOG‘H Fl um qr“. (min: m3 - m: Lem CM“: 1mg“ Cfihfrd (Afar-(L
Cal'gkfih7ll ‘lUIeH J'J' ,a73-r 3(.032$)‘- .lws
,073~ 3 (.flmF may? gnJrM‘IH {Ami (“fiat flmrefl rJ-jfllgfiéfl’TIF {frch
(A + 3 o’ 1
( ry-
M " 3 0" )
r- (I
J'ZF Eh (fin-{rt}; Vanna: 3: {HG 5* 6““)- 3/33.. ...
View
Full Document
- Fall '11
- 14:540:201
-
Click to edit the document details