Assignment 6 Solutions

# Assignment 6 Solutions - Assignment#6 DUE DATE This...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Assignment #6 DUE DATE: This assignment is to be submitted entirely on paper on Friday, April 3rd by 9pm in your TA’s drop box. Hand in one copy per pair. Learnin ﬂb'eativt'e: This aesignm ent advert-z semi: Hi the eeneeplti in Chapter I4. ASSIGNMENT I“ mark; tatal [MUTE tjueetiena te be dene by hand]: 1. Chain Rule — [:1 marks} The iength .1- el" 2: aide era triangle is. increasing al a rale eff! int-'5. the length _|.' ef anether side is. decreasing at a rate {if 3 iIL-"S. and the eenlained angle 15' is. increasing al a rale aft} {:IF radian-'3 1 HM that is the mesa erlhe1ria|15|e changing when .1=4a.J-=5t1. and 5' = 3: HS “r Ma afmin ill" a Inult'I'I-rarialzlltI I'u nctiuns ever a L'IIJEEII and hanntled regien— {6 marks} Find the aheelute maximum and minimum 1.'a]LIe5. ef —.I:'—i" J 2 2 2 -_ fixul'i} = E ' [I + 1}” 1ieverllte dial: Hgiven by}: +J.’ L» 4_ Ab=éioin 2. i033, in=XnJvu9 so Aha-3,9}: J1— )wa M9 Tau AA “BA ck 9_A_ +33— 9 av cum}: Ralf- 6 1r=37f€+23§3€ 36 Jo ixmheiﬁtt +(ixam93iﬁ 1Q. ﬂaw) = {—XL_11(X1+1‘81) OVEL B ‘- Xl’r'féLt - Mm: UZ.\T\CAL 9mst 0? -@ OVEL [31 _ L_ L {xéx‘m = —-lx ("xi—lam(x1+la‘)+ e x "6 . 1x = 4x 64‘? (Kim; - ‘3 'L £10.11 ’— —2,n3 e,"6 "la (x‘+7_1‘\+€_x '11. Lua 3‘ = ‘1? e: 1— SET ‘Qx ){1 =0 3. \$°LVE ’FOL x,na To 621' CLGnLAL Pol-ANS COP.) cusp;le x—_o s) .Q,‘ =3a |3=O=J~€1=o so (053)15 A CJO. 3: (K1*7—\I\\1-\\ , C {Elf—7.) CAMNM" (56 0 AT THE SAME T\‘ME_ \UHEU x10 (50 Q¥=o) x1+Lu87=l :0 (so {we} wE (:ET 2x314. :0 =) ta=il 50 (0:0 ,Con—O ME C(Pfs wHE )d \AT-O C \$0 Qy =0) x1+2\%1——\ =0 (30 6x10) —t\ we GET x1—\—_Q =3 X- 50 C—k,o) )(lp) Ara); c.\°.'s. NOTE: ALL CY. ALE m 5 (max xH-a‘éq FoL ALL ‘5 FONTS). - COHSl-BER. {(2%) on Mummy 0-F 53 ,La. WHEN x+vr=L+¢=> 3=Lhc THEM QQchACx): e-‘fC 3w?) & 2C6 [—2ij F U .2. Q is A Fwa‘chaQ o? x am»: on THE mummy {ma cziTKCAL MUMEEILS oc <2) on L—LL’) m: ~2xe’” =0 - x=0 em. o pow coHWAﬂ-E 1H2 VALUES Gamma: (93mm) To GET _—& N56. MAX. Va Qe‘\ , Aﬂaﬁ. mm B O - ...
View Full Document

## This note was uploaded on 10/02/2011 for the course MATH 1010 taught by Professor Mihai during the Spring '08 term at UOIT.

### Page1 / 2

Assignment 6 Solutions - Assignment#6 DUE DATE This...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online