Normal Density Function-ECO6416

Normal Density Function-ECO6416 - Normal Density Function...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Normal Density Function In the Descriptive Statistic Section of this Web site, we have been concerned with how empirical scores are distributed and how best to describe their distribution. We have discussed several different measures, but the mean μ will be the measure that we use to describe the center of the distribution, and the standard deviation σ will be the measure we use to describe the spread of the distribution. Knowing these two facts gives us ample information to make statements about the probability of observing a certain value within that distribution. If I know, for example, that the average Intelligence Quotient (I.Q.) score is 100 with a standard deviation of σ = 20, then I know that someone with an I.Q. of 140 is very smart. I know this because 140 deviates from the mean μ by twice the average amount as the rest of the scores in the distribution. Thus, it is unlikely to see a score as extreme as 140 because most of the I.Q. scores are clustered around 100 and only
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/04/2011 for the course ECO 6416 taught by Professor Staff during the Spring '08 term at University of Central Florida.

Page1 / 2

Normal Density Function-ECO6416 - Normal Density Function...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online