M0IITU21 - Exp &amp; Log series qns

# M0IITU21 Exp - LOGARITHM 1 The coefficient of xr in the expansion of 1 a bx(a b x 1 2 n 2 1 3 x6 x9 then If y = x 2 3 5 x=(A 1 ey 3(C(1 ey)1/3 1 ey

This preview shows pages 1–2. Sign up to view the full content.

1 QUEST TUTORIALS Head Office : E-16/289, Sector-8, Rohini, New Delhi, Ph. 65395439 1. The coefficient of x r in the expansion of, 1 + a bx + 1! + ( ) ! a bx + 2 2 + . ..... + ( ) ! a bx n n + + . ..... is : (A) ( ) ! a b r r + (B) b r r ! (C) e b r n r ! (D) e a b r + 2. If e x = y + 1 2 + y , then y = (A) e e x x + - 2 (B) e e x x - - 2 (C) e x + e - x (D) e x - e - x 3. If y = x - x x 2 3 2 3 + - ...... , then x = (A) y - y y 2 3 2 3 + - . ..... (B) y + y y 2 3 2 3 ! ! + + . ..... (C) 1 + y y 2 3 2 3 ! ! + + . ..... (D) None of these 4. a b a a b a a b a - + - + - 1 2 1 3 2 3 + . ... is equal to : (A) log e (a - b) (B) log e a b (C) log e b a (D) e a b a - 5. If y = - x x x 3 6 9 2 3 + + + ...... , then x = (A) 1 3 + e y (B) 1 3 - e y (C) (1 - e y ) 1/3 (D) (1 - e y ) 3 6. 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 10/05/2011 for the course MATH 1201 taught by Professor Friesner during the Spring '11 term at St. Mary NE.

### Page1 / 3

M0IITU21 Exp - LOGARITHM 1 The coefficient of xr in the expansion of 1 a bx(a b x 1 2 n 2 1 3 x6 x9 then If y = x 2 3 5 x=(A 1 ey 3(C(1 ey)1/3 1 ey

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online