Chapter 1 - 1.1 um Chapter 1 Signal Period cask!) 2 smart)...

Info iconThis preview shows pages 1–21. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 20
Background image of page 21
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1.1 um Chapter 1 Signal Period cask!) 2 smart) I q A I cassz :- .3 ‘ (4 r) l n z: — 5‘ 2 2: mm: x) 6 J 5:: 4 505(7— r) : _. 3 snap—i r) «25(3- :) 8 3:: l sm(-__- 1' —; J 2 3r 10 c(Md:- f) T 3 3 ILL—.1— f"- "——__.__ . L}, —..J_.—l- ..I-.._sr'..'_"u , as... -1 ........a .— +— 1.2 =1 =r+e' (13) I0) 5.81 =7. l-l’. if u i:€— ICE) is 1.4, 1-5 (Q) —l’1 a they-q I (d) :0} = Zcxp[—r], 0 S L < I, and 13+ I) = *(r) 'z. Lit-133'):- :LE)‘ £0? gv’ch b - :- mc subsHJ-ui-c 3.: - «t-rT 1Ct+1T) -.- th-i-T') = 1th)- "C' 1th) J~$3 PflioéI-c. (dip! PerJCG’ ZT i? we. swash-Ext: 4:.=-E:+2.T tLt-e-ST) -: 2Lt+z‘r) = ILL-D PgYiaat}. mi”! pew'aq‘ 3! 1L&) Partécin'c. city's Pavia; X3Ct) =_ a):.(t) 4 1: F269 X3 Lt-t—T) : qfifit-a—T) + EXILE-+1") :: aX.(,t) J. beLLE) _: XaL‘t) S {fl 1.11.1: is, . i. 3 PCT lac: KC (film [5-- Periclt‘g, gal-Ha Pc-«ioél g. “Tag-1 K PETEQJI}; (43.1% pc‘r1;3& 3 - "T -u - _ I. [-5- (‘bp ‘11P [.3 gt] L‘s Per'toclic. “3:14, [xvioa .; an d! C113 Ir ’1] f5 Perl'ocfic mm: pfi’l'oc! 2 . 1111!" x LE) 35 Perl-03w. {DUB period __ C. ‘ a ' ‘r'IaJ'c " H] (C) czphzgh] ‘5 pt! I ‘3' u.) a; fixPE‘thj {s Peficdic. ml“: pea-"cod 2%: 111'“- 271' Subcg 4h: gal—{o cf. +h¢5¢. 4-1pm Pcw'aJs , 5. JE- ' '3 {.5 "DE a TQHona-l “umber, XLO 1'; no? Pew-Walla.- 5 . . (d) cxpfg I} IS not pcnodic, so that x(:) is not periodic. 16 (3)7} =_. Tzzfifi— 8r "7' exp [Uth = Casi-oi: +J'Sc'qw’t: (Eult‘r's Formula) SEW-5' CDSuaE or“; St‘n wt an: Perlgdlic LDF'Hs Peri“; 177/13 J {-15:47 “Hue.” “near combl'nfl pm” is GISO pc‘r-‘odfc. wH—k pew-ac! 171' fig . "'3 Sa‘n cc tLt} f5 PcViédic. 03"“: 13:” Oct TI zLat) = 3L La&+T3 = qu LI; 4- 174)) F3? Eta {1‘} 4-5: 1m: {Jr-Had}; uni»: page-cl T] 11:1ch '1”. 1 1"!“ SimSlarlvj I 2Lt/b) = x Len, 4 T) = Debt U;- J-ET) ) For 2 4-9 L: Pew-Each; (9.144., .IXYioc} one. nccds ‘ "I" = 1;:- F5? 5;“ t T‘ = 117' For 51.11 3—}: I 'T" -.-_ 1r __. TI;- Sr an {:11 TL : 417 = 2-:— 14 ' I T ~ {3) P = Timon E-Tzzsifig 0dr r l T $0 (2.7: = 1m — :' —cos-—r T+oé4T_T 3 . r - ' 1 2T: 2;: _. hm __ __ _ _ T400 4T 3 7‘cos( 3 0d: -—-—+oo so that x(:) is neither an energy nor a power signal. 1' —4l '2, (b) E: r;n;o '[cxp[ Ii]sm (10d: —: 2 I: = I] cpr—4r][! —cos(22:r)]dr = 7:21“: so that x0) is an Energy signal with P = 0. 5 "the n cant. I T; I r I J. axp(3lrl}d.r = lim I. q. —: l eST—I (c) 12:53—- "22‘ WOO sc that :0) is neither an energy nor a power signal. (0‘) no is periodic with period T = 1215:, so that i: is a power signal with 7 — 5in(2—;r 1)} and is periodic with T = 48 secs. Thus T . I , 251: 7;: -, = — —— — - ""_ “d P 4T J[sm( 24 :) 51:1(24 U} I _,25:: I T I 7. I = 4—7.. J5m‘(—-— 0dr + — T .Zh dmfl 24 47' 0 5'” (24 U] (0 P: so that 1“) is a powersignal. . V T I T W I! K084}.le f IKLtHldl: - PT lfoLthl :- J?- a 2?” o _ f25:? sm_ 24 7:: r ' '— d: )sxrjtz4 I) 3 Mm .fl. H 2 0 4 __ .9; u ... hv . 4 x * m. _ , 4 - / 3.... / F u 2}". . 2 2 5 w. 4 \ r < < c a . S S <. .r 2 llfillunllllllkllli I. I... 2 4 m; I E. a m 3 2 + _ 2 0 .. Fl. __ m. .1 2 _ u. hu 1 .I] I.“ 3.4 9—45 ._. < I? . .| z. ( <_ S I (a 43.4 9" _ 9.4 156 Olhel’w 1.. .21. .2 + . - p OuquTZIJ Elli-IllIlI-I‘ 0 ) vi.)- __ _ + I 713 x (\ 1 .39134 .3 . _ _ <_ S <_ < < < 923435.} _ _ . otherwisc 2t—2 x(t-2)= 2t—6 0 —6r—6 x(—3: —2) = .6;_ 2 0 lSL<2 251<3 otherwise 2 -l <r$—— 2 1 -:<rS—— J 3 otherwise ,/_Wj -{ [El-+3 —4£r<—3 x(r+3)= 21+4 —3$r<;—2 1 0 otherwise 4.5 —2 -I5 —I_ 45 n :5 '3': 4 9 3 —r+3 ——Sr¢—_. 3 t; 4 4 3 o “l-1 “25h:— x(§r+-— = 4 3 ~ 2 otherwise 0 ":3 = u + 3“ Lnt"l) -lu Lt-2_) £2,110 1 143(5) XLLE) = Y Lt) - TLt-i) - u (t-z) 1,10 (r—‘J'Xthh 2. uLt) 4 £51-.) J L. (F) ngt\ r: uCJc)u.{a-t') ’ 03:: X7LE)= uCCDSt) : {‘ Costpo \d L_'.' 1-14- (a ) 0:) 1° (—63 Ha" (a) (A) 2(- Lt) L+fi~ ._..._._...._...__...A_. i Ext—t) +2 ea] 2: CE) é[1C-tj) qua] -Ji [26?) — 1C-b)] -x.(_t) 11 -u (if) L— 2. J - . -.2 -3 (b) LL+a3+LL‘R) = 2L. (:3 CL+23+ C—(L—z)) -_ (L+R.)+ (R-L)=2.R. 12 Pk HG Kit) = uCt) - Laure?) xgce) = *‘(t‘a — Yu—a) - autt-b) X303 —- L [V (Mb) — *(t-i—q) —-rU:-—n) + Y(t-h)] been qu = (ya)- yea) (u um) — u'(t—a)) = :- - L YCf-C) + .lc.Y_(_b"2Q+CJ cQa—c) XcUfl: .L. [Ytt+b) -V(e+q)] + uu.) __g____ LYLE-QJ-Y(E-bj b— u. lav—0k 11"?— ciuvajrcon oi— X.C{:)=T _ Av (b) Xzfit): x.C3L~) = Agw“ u(3+:) :2“ Tu U) I t!) = A :- 1 F Tina. chiral-«Ln of. }(LCE) 5;: can x3 Lt) = x! (’72) =Ag-t/27a Liz) = Aft/2T uU:) {3(a) =-A I _ ‘t'IZT f ¥3LtJ-_/i_Ac ____,> th—r C. 13 "fine. AM‘QFOO 9‘“ “a. w; th) :- rad: L512.) '10:} = X(_{:) 4. ongtJT/l) 1- 0.2.15th—T} T >72. (A) T :10 30:) =. th); o-stt—5) 4.0-7.5 xLe-Io) T >>:_ Co) T210 l-H (a) P, at) = {m : e->o e TrCcsLa t/L. pal-g 44514. (3.0:) is an arch ngmch-r'c. Funchén Lag-n, Pl (0] = All"! -——-I -'> A5 é-aa e 17— £cr f ¢ 0 5 6-90 ér( egé+ c ) 2.. _ 2. = tn" _ 6—50 ‘5'” (ct/6+ five) ea" Trick/s: +5475.) - —3-._ 7- [1m 41—. = Um 3° era-‘5“ T(¢qe+ g/e) u ' a0 ' 4+ 0 .m‘ L name at” 6T _[ Cash We) = L" :77.— j Sada (Jr/e.) J-t é—50 _‘o A} [I'm -I—- -J[ '5ch (t'JJEr _ C--?o Tr filo 4'0 _ 1;.“ 1'; m" (gnaw) )w 6"30 1 :J'am £--‘Do P-Ct) Can be usaci as o. rho-uncmaLCc-J t'=: E. model {or I acme . _._ e) =- Lm ] 25 - 1"“ I W l+ 27b 1 ago _‘0 GL++~E1£L 9—30 --0 e I -I ~ '0 .. inns —" E” (#1174?) I 9—) o e --O '1 Con la: mhéclIcJ as Q. é-eud..Fu¢1rJ-lnn (A) P4 (1:) ; If": I 6—5:» W £l+e1 - "0L"— JinaL [34(5) is an evcn Sqmmafic panel-13:1 “3% 230’) = all}?! i. :55 «2—50 Tel" (of li-I' o P‘ Lt) _._ 1;," .3... 1-0 6—5:: VCR-+91) In? no . . E: a”: ? Lac“: 2 Ann -4, 4 é-Bo -4, “(tan-e") . “I =‘_£qn4_{;1 _-‘-—I.n:+._.-T_r)-=l U— 6. F Tr \ L ‘2— W Ft. Lil") can be. us-ecJ‘cxs a manic! For 45; «RU-q ‘CUT‘ cJ-c'on . 16 a) Fritz); an e axp["élt{j 6-50 not-c, “an”; Ps({:) 13, on gun simmel'vk Punch-on (511%; E—(aJ=J.:m e no ‘2—5: r:- Ur) Cunnni' be usgcl as o modg‘ For- 4:56 cleH-o. {mack-or: . 0:“) Hugh". J— 9"” 6-30 Tr * flak. +54;- fifit) -é. dn nan stirnmckie. Furrch mm, {3303) :: Inn 2. SI-r‘ 9'5 _ o 6.5:, T e’f P‘Cb) cqnm+ Ibe “:3 as Q Mac‘s: For ‘H‘N Jena. fiungJ-ion - " 2 3 ‘ L20 (a)J(§:;i)5(:~1)dr=§—%=—% °° 2 3 °° 2 3 °° 3 (inU—Ufl-jr—im: J(r—l)6(§:—§)dz= I(t—l)§§(r—I)d1—0 (C) J;[CXP(-t+ i) + sin; % 1)]60 - gm = 0- (d) I[6xp(~r + 1) +‘ sin( 3;- :na: - gm: = 3—05 + sin(;:) = c435 - (e) J exp[ —5: +115’(:— m: = 45”) = — 5.?” 17 *4- ;.2: p[)f:~x]=_f Hug: ‘09 150;): 0.; Sfix+z) 4-0-5311) +0-25'cx-—I) + o.‘[U{K‘3)'ufx-‘JJ 75(1) “1 m; w 1 I r—m I *3 («3 P [_x&-3]=J ((2)42: = o 1.;- IS 4- 0-2 (RX-13:12: (b) X.’.- ['5'] =f FCx)Jx 3 (0,1;(x+z)§~a-3§(X) - _ 0.2 +0.3+ 6-2. = 6.7 (a) P[xs4']-_J¢1[(X)JX —I0 4. z 0.2_ +0.3 4—0-2 4-0-1} A); 3 :a.1+o.3 L o..z 1- o-I = 0-8 5 (cl) Pfxss] ~_ chx)&x -lo _ 9 6 ': o.z+o-3 4-0-24-D-lfcf,‘ 3 6.2+ e.3 40-2, 4-0-3 _—,I ll 18 l- 12. -U:+') Vfit) = C uLE+-n)+.fée-:) (.43 1 . : I _;_1_:L\___, “1.. l0 1 ,5 _ Lt} :- m A F 2.; 002)] = i [exp [- CHO] uCt-H)+S(t-1)J x 19—3 db = (up[-cw)] 50:“) -<-z_P[-(£+U] u (an) + J'Ct—r) ) filo-3 *(t1-l) ' ~3 3 (SLE'H)*C uCt-H)+§l(£—1)xlo N t (c) {LLU = k f u(’r’)3’r I: = {4] ¢LP[—(T+;)]u(r+i) + SHAH? 0) t 4‘! Fu. (£310 L2.) -I (b 4' {,kLt) 3 l— :1!) [- Cb+l)] N. (3) t): FKLE) -.- I..uP[-a-+.)] +u(e-,) N 19 1-23 (3} 1-1:): 5(1) + 55$ -1)—- 25": — 2) 360:) I 4 .5 “i I _ _ oT—j J r-.. (b) x’(t) = u(t) - u(r- I) + 260 —2) - x"(I)=5(r)-~5(t— I) +25'(:—2) If (t) a... 20 k-u: (c) From Equation [1.12). we 5:: that :10 = 2a(! + I) — 46(1) - 2:4: — I) ..n d. (I): 26{t+l)—45'(1)—26(:--I) l’t't) 1L 0' ¢ "”" 4 T hxflt‘) T .4: 21 ...
View Full Document

This note was uploaded on 10/05/2011 for the course EECS 216 taught by Professor Yagle during the Fall '08 term at University of Michigan.

Page1 / 21

Chapter 1 - 1.1 um Chapter 1 Signal Period cask!) 2 smart)...

This preview shows document pages 1 - 21. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online