Pre-Calc Homework Solutions 222

# Pre-Calc Homework Solutions 222 - 222 x Section 5.4 x 35 a...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 222 x Section 5.4 x 35. a f (t) dt x K b f (t) dt x 43. Choose (d). dy dx d dx x e e t2 t2 dt 3 3 0 e x2 K a a f (t) dt b x f (t) dt f (t) dt b y( ) dt 3 3 f (t) dt x a f (t) dt b 1 44. Choose (c). dy dx d dx x sec t dt 1 1 4 4 sec x 0 4 4 K 2 (t 2 3t 3 2 t 2 3 2 1) dt 1 y( 1) 1 sec t dt 1 3 t 3 1 3 t 2 ( 1) 8 3 6 2 3 2 45. Choose (b). dy dx d dx x sec t dt 0 0 4 4 0 sec x 4 4 36. To find an antiderivative of sin2 x, recall from trigonometry that cos 2x 0 y(0) 0 sec t dt 1 2 sin2 x, so sin2 x 1 2 1 cos 2x. 2 46. Choose (a). dy dx d dx x K 2 sin t dt 0 2 2 e 1 1 t2 t2 dt 3 3 0 0 e x2 y(1) 1 2 1 cos (2x) dx 2 1 sin (2x) 4 0 2 0 2 1 e a since dt 3 3 a 47. x 48. f (x) f (t) dt a x 1 x 2 1 x 2 1 sin x cos x 2 d dx f (t) dt 1 x 0 d 2 (x dx 10 2x 10 1 x 1) 2x 2 49. f (x) sin 2 cos 2 2 2 0 dy 37. dx dy 38. dx d dx 1 1 1 x sin 2 cos 2 2 d 2 dx 1 t dt 1.189 f (0) f (0) L(x) 10 0 x 2 2 0 10 1 t dt 2 2 10x x 1 dt t d dx d ( dx x 1 1 dt t 1 x 1 1/2 x 2 sin x 2 x 50. f (x) 39. 40. dy dx dy dx sin ( x)2 cos (2x) d dx x 0 3 x) (sin x) d f (t) dt dx 0 d (x cos x) dx d (2x) dx 2 cos (2x) x 2 x( sin x) x sin x 1 cos x cos x cos 4 1 0 to x /k 0 dy 41. dx cos (2t) dt 0 cos (2t) dt cos (2x ) 2x 2 f (4) 4 sin 4 cos (2x ) 3x 3x cos (2x ) dy dx d dx d dx cos x sin x cos x 0 3 2 2 3 2x cos (2x 2) 51. One arch of sin kx is from x /k k . 1 k 1 k 2 3 Area 0 sin kx dx 2 1 cos kx k 2 k 42. t 2 dt t 2 dt sin x 0 t 2 dt 52. (a) 3 (6 x x 2) dx 6x 22 3 125 6 cos2 x ( sin x) sin x cos2 x sin2 x cos x 1 2 x 2 27 2 1 3 x 3 sin2 x cos x ...
View Full Document

## This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online