Pre-Calc Homework Solutions 257

Pre-Calc Homework Solutions 257 - Section 6.3 31. Let u (3)...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 6.3 31. Let u (3) dx, so 9 257 28. Let w dx e 2 3 3x 9 3x 3x dx 9. Then dw 9 dw w 1 2 3x xn nx n 1 dv dx v cos x dx sin x (sin x)(nx n 1dx) n xn dv 1 du 2 w dw. 3 x n cos x dx 2 w ew dw 3 x n sin x x n sin x 2 (e ) w dw 3 sin x dx Let u du w dv dw v e dw ew w ew w ew (w ew dw ew 1)ew 33. Let u du 1)e 3x 9 w 32. Let u du xn nx n 1 sin x dx cos x ( cos x)(nx n 1 w ew dw dx v x n sin x dx (x n)( cos x) x ncos x dx) n xn dv 1 cos x dx e 3x 9 dx 2 w ew dw 3 2 (w 1)ew 3 2 ( 3x 9 3 xn nx n 1 e ax dx 1 ax e a 1 ax e (nx n 1 dx) a dx 1 a v C x ne ax dx (x n) e ax x ne ax a 29. Let w x e 7 x2 x 2. Then dw dx (x ) e 2 3 x2 2x dx. x dx 1 3 w w e dw. 2 n n 1 ax x e dx, a a 0 Use tabular integration with f (x) f(w) and its derivatives w3 3w2 6w 6 0 (+) () (+) () g(w) and its integrals ew ew ew ew w 3 and g(w) e w. 34. Let u du (ln x)n n(ln x) x n 1 dv dx v x dx (ln x)n dx (ln x)n(x) x(ln x) n n(ln x)n x x 1 dx dx f (y) dy. y f (y) dy n (ln x) n 1 35. (a) Let y f 1 (x). Then x (x) dx f (y), so dx (y)[f (y) dy] dv f ( y)dy f (y) f (y) dy f (y) dy Hence, f (b) Let u du 1 y dy y f ( y) f 1 ew v w 3 e w dw w3 ew (w 3 3w 2e w 3w 2 6w 6w e w 6)e w 6e w C C y f (y) dy (x)(x) x 7e x dx 2 1 3 w w e dw 2 1 3 (w 3w 2 6w 6)e w C 2 2 (x 6 3x 4 6x 2 6)ex C 2 1 dr, and so dr r Hence, f 1 (x) dx y f ( y) dy xf 1 (x) dx x f ( y) dy. 36. Let u du f 1 (x) dv v d f 1(x) dx dx 30. Let y ln r. Then dy r dy e y dy. f 1 (x) dx xf f 2 1 (x) d x f 1(x) dx dx Using the result of Exercise 13, we have: sin (ln r) dr (sin y)e dy 1 y e (sin y cos y) C 2 1 ln r e [sin (ln r) cos (ln r)] C 2 r [sin (ln r) cos (ln r)] C 2 y 37. (a) Using y 2 1 (x) sin 1 x and f (y) sin y, y 1 , we have: x sin x sin x sin 1 1 1 sin x dx x x x sin y dy cos y cos (sin C 1 x) C ...
View Full Document

This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online