Pre-Calc Homework Solutions 277

Pre-Calc Homework Solutions 277 - Section 6.6 14 To find...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
14. To find the approximate values, set y 1 5 y 2 e 2 x 1 1 and use EULERT and IMPEULT with initial values x 5 0 and y 52 1 and step size 0.1 for 20 points. The exact values are given by y 5 e x 2 e 2 x 2 1. 15. (a) } d d y x } 5 2 y 2 ( x 2 1) } d y y 2 } 5 2( x 2 1) dx E y 2 2 dy 5 E (2 x 2 2) dx 2 y 2 1 5 x 2 2 2 x 1 C Initial value: y (2) 52} 1 2 } 2 5 2 2 2 2(2) 1 C 2 5 C Solution: 2 y 2 1 5 x 2 2 2 x 1 2 or y } x 2 2 2 1 x 1 2 } y (3) } 3 2 2 2 1 (3) 1 2 }52} 1 5 }52 0.2 (b) To find the approximation, set y 1 5 2 y 2 ( x 2 1) and use EULERT with initial values x 5 2 and y 1 2 } and step size 0.2 for 5 points. This gives y (3) < 2 0.1851; error < 0.0149. (c) Use step size 0.1 for 10 points. This gives y (3) < 2 0.1929; error < 0.0071. (d) Use step size 0.05 for 20 points. This gives y (3) < 2 0.1965; error < 0.0035. Section 6.6 277 x y (Euler) y 12 improved Euler y (exact) 0 2 1 2 1 2 1 0.1 2 1.1000 2 1.1161 2 1.1162 0.2 2 1.2321 2 1.2700 2 1.2704 0.3 2 1.4045 2 1.4715 2 1.4723 0.4 2 1.6272 2 1.7325 2 1.7337 0.5 2 1.9125 2 2.0678 2 2.0696 0.6 2 2.2756 2 2.4954 2 2.4980 0.7 2 2.7351 2 3.0378 2 3.0414 0.8 2 3.3142 2 3.7224 2 3.7275 0.9 2 4.0409 2 4.5832 2 4.5900 1.0
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online