Pre-Calc Homework Solutions 326

# Pre-Calc Homework Solutions 326 - 326 Section 8.1 2x x 1 26...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 326 Section 8.1 2x x 1 26. lim (ln 2x x ln (x 2x x 1 1)) lim ln x 33. The limit leads to the indeterminate form Let f (x) ln (ln x)1/x ln (ln x) lim x x 0 . Let f (x) lim x . 2 (ln x)1/x. ln (ln x) x 2x x 1 2 x 1 lim Therefore, lim (ln 2x x lim x 1/x ln x ln (x ln sin x) x . sin x 1)) lim ln f (x) x ln 2 1 lim x 1 x ln x 0 27. lim (ln x x0 lim ln x0 x sin x lim (ln x)1/x x lim eln f (x) x e0 1 0 Let f (x) x lim x0 sin x 34. The limit leads to the indeterminate form 1 Let f (x) ln (1 (1 2x) 1/(2 ln x) . 1 lim x0 cos x . Therefore, lim (ln x x0 2x)1/(2 ln x) lim x ln sin x) 1 x lim ln f (x) x0 ln 1 0 ln (1 2x) lim 2 ln x x ln (1 2x) 2 ln x 2 1 2 x x 2x 28. lim x0 1 x lim x0 1 x x lim x x 1 2x lim x 1 2 1 2 29. The limit leads to the indeterminate form 1 . Let f (x) (e x x)1/x. lim (1 x 2x)1/(2 ln x) lim eln f (x) e1/2 e 35. The limit leads to the indeterminate form 00. Let f (x) x) ln (e lim x0 x x) x 1/x ln (e x x (x 2 2x 2x 1)x 1 1)x (x 1 ln (x 2 1 x 1) ln (x 2 2x 1 x 2x 1 2 2x 1 (x 1 1)2 2x 1) ln (e x) x lim x0 ex ex 1 2 e2 0 ln (x 2 1) lim (e x x0 x)1/x lim e ln f (x) x0 30. The limit leads to the indeterminate form Let f (x) 1 x ln 2 x 1 x2 1 x . 1 x . x2 1 x ln 2 x 2/x 3 1/x 2 2 lim ln (x 2x 1 x 1 1) lim x1 x2 x1 ln 1 x2 1 x 2(x 1) (x 1)2 lim 1 x1 (x 1)2 ln lim lim 2x x0 2(x ln f (x) 1) e 0 0 1 lim x0 lim x0 1/x 2 0 x1 lim (x x1 2 2x 1) x 1 lim e x1 1 x x2 x0 lim lim e ln f (x) x0 e0 3 4x 1 1 0 7 11 36. The limit leads to the indeterminate form 00. Let f (x) (cos x)cos x. (cos x) ln (cos x) sin x 31. lim x 3x 2x 2 sin 7x x 5 2 lim x ln (cos x)cos x ln (cos x) sec x 32. lim x0 tan 11x 2 x0 11 sec 11x lim 7 cos 7x ln (cos x) cos x lim sec x x /2 x /2 sec x tan x lim x /2 sec x tan x lim lim tan x cos x 0 e0 1 x /2 lim (cos x)cos x x /2 lim e ln f (x) x /2 ...
View Full Document

## This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online