Pre-Calc Homework Solutions 340

# Pre-Calc Homework Solutions 340 - 340 1 Section 8.3 1 36 1...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 340 1 Section 8.3 1 36. 1 ln x dx 2 0 ln x dx by symmetry of ln x about the 40. dx 0 1 0 dx x b 1 dx x dx x b y-axis. Integrate ln x dx by parts. 1 x dx x lim b 1 u du ln x 1 dx x dv v x ln x 2 lim b0 b dx x lim 2 b x 1 lim (2 b b 2) ln x dx 1 dx 1 x ln x ln x dx 1 x C Since this integral diverges, the given integral diverges. 41. 0 1 x dx x cos x on [ , ) x b dx lim lim ln x x b b 2 2 0 ln x dx b 2 lim b0 b0 x ln x x b lim (ln b b ln ) 2 lim [ 1 Note that lim b ln b b0 b ln b lim b0 b] lim b0 2 1/b 1/b 2 Since this integral diverges, the given integral diverges. 42. 0 1 2 dx x2 sin x x2 2 on [ , x2 b ln b 1/b ) lim b0 b 0. lim b 2x 2x 2b 2 dx b The integral converges. 37. 0 1 1 on [1, ) 1 e e b 1 d lim e d e 1 b b lim b 1 lim b 1 2 2 1 lim b e 1 Since this integral converges, the given integral converges. e 1] 43. First rewrite 1 ex e x 1 ex e 1 lim [ e b b x. 1 e Since this integral converges, the given integral converges. 38. 0 1 x dx x b 1 x2 b on [2, ) 1 dx x b lim 2 lim ln x b 2 lim (ln b b ln 2) ex e x(e2x 1) 1 (e x)2 e x dx Integrate by letting u e x so du 1 (e x)2 dx e x dx x x e e 1 (e x)2 du 1 u2 e x dx. 2 tan tan 1 u ex dx e 0 C C x Since this integral diverges, the given integral diverges. 1 39. Let f (x) [1, ). x 1 and g(x) x2 1 . Both are continuous on x3/2 0 dx e dx ex e ex 0 x ex 0 ex dx e x x lim b b ex dx e 1 x x 1 f (x) lim lim x g(x) x x x b 1 dx lim x 3/2 dx x3/2 1 b 1 lim 1 1 x 1 lim b tan ex 1 0 b lim [tan b 1 tan 1 e b] lim b 2x 1/2 b 1 4 0 b lim ( 2b b 1/2 2) 2 0 dx ex e x lim b 0 4 dx ex e 1 x Since this integral converges, the given integral converges. lim tan b ex e b b 0 lim [tan b 1 tan 1 1] 2 4 4 Thus, the given integral converges. ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online