Pre-Calc Homework Solutions 360

Pre calc homework solutions 360

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 360 Chapter 8 Review dx e e x 50. Evaluate e u du e u du x x cos x dx using integration by parts. dv v e x x 53. x cos x sin x dx cos x dx e e x dx e (e 2x x 1) e x dx (e x)2 1 dx Let u ex dx e x x e , du x x e dx du u2 1 0 x cos x e e sin x cos x sin x e 2 b sin x e x x tan dx e 0 1 u C ex tan dx e x 1 ex C dx Evaluate sin x e sin x cos x dx x dx using integration by parts. dv v dx 0 dx e e ex dx e x ex x 0 x x lim b b ex dx e 1 x lim sin x e e x tan 4 b 0 ex dx e e e e x x e e e x x cos x dx e C1 x b 0 b 1 lim cos x dx x x x b tan x eb 4 sin x cos x C cos x dx 0 dx ex e x lim b dx ex e 1 2 e e x cos x dx x x lim tan b ex eb b 0 4 cos x dx u sin x cos x lim tan b 1 e 0 cos u du lim b 0 e e e x x cos x dx e 2 e 2 x 2 cos x b 0 cos b 1 2 4 4 lim b sin x sin b b b Since these two integrals converge, the given integral converges. lim b 1 2 54. The integral has an infinite discontinuity at x dx x (1 e x ) 2 1 0. Note t...
View Full Document

This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online