Pre-Calc Homework Solutions 407

# Pre-Calc Homework Solutions 407 - Section 10.2 3 2 407 26 x...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 10.2 3 2 407 26. x y 3 sin t, y 3 2 3 cos t; for t (x )2 (y )2 1 2 3 2 2 1 2 4 ,x , , and 1 3 1 3 3 3. , , 1 2 1 2 32. Since u and v are nonzero, we know that u 0 and v 0. Therefore, the dot product u v u v cos is 0 if and only if cos 0, which occurs if and only if u and v are . orthogonal 2 Tangent: Normal: , 2 3 , . 33. (r1, r2) v u (u1, u2) u+v u v 3 2 , 27. AB E BA E AB E AC E 3, 1 , BC E 3, BA E CA E 1 , CB E 1, 3 , and AC E 2, 2. (v1, v2) 1, 3 , and CA E CB E 2, 2 . 10, and 10, BC E 2 2. cos cos cos 1 Angle at A AB AC E E AB AC E E 3(2) 1( 2) ( 1 5 10)(2 2) r1 r2 v1 v2 u1 so r1 u2 so r2 u1 u2 v1 v2 1 34. (a) To find u v, place both vectors with their initial points at the origin. The vector drawn from the terminal point of v to the terminal point of u is u v. Or, add u and v according to the parallelogram law. (b) 1 63.435 , Angle at B BC E E BA cos 1 BC BA E E (u1, u2) cos cos Angle at C 1 ( 1)( 3) ( 10)( ( 3)( 1) 10) v uv u uv v (r1, r2) 1 3 5 53.130 , and CB CA E E cos 1 CB CA E E v (v1, v2) u cos cos 28. AC E 1 1( 2) ( 3(2) 10)(2 2) 1 5 1 63.435 . 2. 0, so the angle measures 90 . w2) r1 r2 ( v1) ( v2) u1 r1 u2 r2 u1 u2 v1 v2 2, 4 and BD E 2(4) 4, 35. (a) Let P 1 OP E 2 (a (a, b) and Q 1 OQ E 2 c) (b d) , 2 2 2 OP E 3 1 OP E 3 (c, d). Then 1 a, b 2 1 c, d 2 AC BD E E 4( 2) 29. (a) u (v w) u1(v1 w1) u2(v2 (u1v1 u1w1) (u2v2 u2w2) (u1v1 u2v2) (u1w1 u2w2) u v u w (b) (u OM E v) w (u1 v1)w1 (u2 v2)w2 (u1w1 v1w1) (u2w2 v2w2) (u1w1 u2w2) (v1w1 v2w2) u w v w u12 u2 2 v) v1) u22 (v12 (u2 v22 v22) v2)(u2 v2) ( u12 u22)2 u2 (b) OM E (c) OM E 1 OQ E 3 2 OQ E 3 30. u u 31. (u u1 u v) (u (u1 2 v1)(u1 v1 2 (u12 2 u22) v2 ...
View Full Document

## This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online