Pre-Calc Homework Solutions 432

# Pre-Calc Homework Solutions 432 - 432 27 Section 10.6 30...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 432 27. Section 10.6 30. The integral given is incorrect because r out the circle twice as cos sweeps goes from 0 to 2 . Or, you can't use equation (2) from the text on the interval [0, 2 ] [ 9, 9] by [ 6, 6] because r cos is negative for To find the integration limits, solve 3 csc , 6 3 5 . The correct area is , which can be found 2 2 4 3 by computing the areas of the cardioid and the circle 2 4 5 . The area in question is 6 6 5 /6 1 2 (6 32 csc2 ) d /6 2 5 /6 1 36 9 cot 2 /6 separately and subtracting. dr d 31. 2 , so 5 Length 0 5 ( 2)2 2 (2 )2 d 4d 5 0 12 28. 9 3 0 1 2 ( 3 1 (27 3 [ 3, 3] by [-2, 2] 4)3/2 8) 19 3 To find the intersection points, solve 6 cos 2 48 cos4 cos 2 32. dr d e 2 , so e 0 9 sec2 4 2 Length 9 0 0 e 2 2 d 2 24 cos2 3 4 e d e 0 e 1 6 /6 . 33. dr d By the symmetry of the curves, the area in question is 2 0 sin , so 2 1 6 cos 2 2 3 sin 2 9 tan 4 9 sec2 4 /6 0 d 3 4 3 Length . 0 2 (1 2 0 2 cos )2 2 cos 4 cos2 2 2 ( sin )2 d d , 29. (a) Find the area of the right half in two parts, then double the result: Right half area /4 0 2 0 2 2 2d 1 tan2 2 /2 d /4 1 1 csc2 2 2 /2 d 2 cos 0 d d 8 1 tan 2 1 1 2 4 /4 0 1 4 cot /4 4 0 cos 2 1 (0 4 1) 3 2 3 4 4 8 . 34. dr d 8 sin 0 Total area is twice that, or (b) Yes. x y . a sin 2 0 cos 2 , so 2 tan sin x 1, cos y 1, x sin2 cos sin Length a 0 a2 sin4 sin2 cos 2 2 a2 sin2 d 2a 0 2 cos2 2 d tan lim /2 lim /2 y 2a /2 lim x /2 lim y ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online