Pre-Calc Homework Solutions 447

Ln y y 500 y d ln 500 y 008x c1 9 2 1 cos 2 2 1 sin

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 sin 2 4 2 0 d C2e 0.08x C2e 0.08x 9 3 2 2 2 sin 0) 1 y (1 y 70. 1 ) 500C2e 0.08x 9 (3 2 27 2 x3 2 dx 2 42.412 1 7 x 4 7 1 1 500 Ce 0.08x 76. Volume 1 14 0.224 dy dx dy y 4 dy y 4 (y (x (x x2 2 4)(x 3) dx 3) dx 3x 2 3) 77. Solve 4x x 0 or x x2 0 to find the limit of integration: 4. By the cylindrical shell method, 4 Volume 0 2 x(4x 1 4 x 4 4 0 x 2) dx 128 3 4 2 0 (4x 2 x 3) dx ln y y 4 4 y C1 4 4 2 4 3 x 3 e C1e(x Ce(x 2 /2) 3x 134.041. 78. The average value is the integral divided by the interval length. Using NINT, /2) 3x 71. Use EULERT. x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 y 0 0.1 0.2095 0.3285 0.4568 0.5946 0.7418 0.8986 1.0649 1.2411 1.4273 average value 79. y 1 0 sin x dx 0.763 sec 2 x, so we may use NINT to obtain /4 Length /4 1 dy dt (sec 2 x)2 dx 1 2.556. 80. dx dt cos t and sin t, so we may use NINT to obtain /2 Length /2 /2 /2 cos 2 t 2 (1 sin t)2 dt 4. 2 sin t dt...
View Full Document

This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Spring '08 term at University of Florida.

Ask a homework question - tutors are online