Pre-Calc Homework Solutions 467

# Pre-Calc Homework Solutions 467 - Appendix A6 40 180 x and...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Appendix A6 40. 180 x and y (a) (b) x a2 2 467 x cos 180 y sin 180 y x x sin 180 y b2 2 y cos 180 43. (a) B 2 4AC 42 4(1)(4) 0, so the discriminant indicates that this conic is a parabola. (b) The left-hand side of x 2 4xy 4y 2 6x 12y 9 0 factors as a perfect square: (x 2y 3)2 0 x 2y 3 0 2y x 3; thus the curve is a degenerate parabola (i.e., a straight line). 44. (a) B 2 4AC 62 4(9)(1) 0, so the discriminant indicates that this conic is a parabola. 1 1 a2 y b 1 y m( x ) y y m( x ) mx by mx b x2 a2 2 y2 b2 (c) x (d) y (e) y 41. (a) B y 2 mx mx 2 4AC 2x 2x x 1 1 4(0)(0) 0 y(x 1 hyperbola 1) 2x y and we want 2x x 1 (b) The left-hand side of 9x 2 6xy y 2 12x 4y 4 0 factors as a perfect square: (3x y 2)2 0 3x y 2 y 3x 2; thus the curve is a degenerate parabola (i.e., a straight line). 45. Assume the ellipse has been rotated to eliminate the xy-term the new equation is A x the semi-axes are 1 and A 2 AC 4A C 2 0 (b) xy (c) y dy dx 2 (x 1) 2 Cy 2 1 1 the area is C dy dx 2, the slope of y 2 (x 2 1)2 2x 1)2 4 3 (3, 3) is a 1 A 1 C . 4A C 2 4AC B2 x (x Since B2 (because B 4AC B 2 4A C 0) we find that the area is as 3 or x 1; x 3y claimed. point on the hyperbola where the line with slope m y x 3 2 is normal the line is 2(x 1y 3) or y 1 ( 1, 2x 3; 46. (a) A C (A cos2 B cos sin C sin2 ) 2 2 (A sin B cos sin C cos ) A(cos2 sin2 ) C(sin2 cos2 ) A C E sin )2 ( D sin (b) D 2 E 2 (D cos 2 cos ) D 2 cos2 2DE cos sin E2 sin2 D 2 sin2 2DE sin cos E 2 cos2 2 2 2 2 2 D (cos sin ) E (sin cos2 ) 2 2 D E E 1) is a point on the 2 is normal hyperbola where the line with slope m the line is y 1 2(x 1) or y s Appendix A6 2x 3 (pp. 618627) 1. sinh x 1 3 cosh x 1 sinh2 x 4 9 25 5 sinh x , tanh x 16 4 16 cosh x 3 , coth x 5 1 sin x 1 tanh x 4 3 1 3 2 4 [ 9.4, 9.4] by [ 6.1, 6.1] 42. (a) False: let A parabola C 1, B 2 B2 4AC 0 3 4 5 4 5 , sech x 3 1 cosh x (b) False: see part (a) above (c) True: AC 0 hyperbola 4AC 0 B2 4AC 0 4 , and csch x 5 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online