Pre-Calc Homework Solutions 116

# Pre-Calc Homework Solutions 116 - 116 dy dx dy dx dy dx dy...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 116 dy dx dy dx dy dx dy dx dy dx dy dx Section 3.9 d (x ) dx d 1 (x dx d x dx d 1 e x dx d x 8 dx d 9 x dx d csc x 3 dx 2) 1 11. 12. 13. 14. 15. 16. 17. x 25. 2)x 1 2 1 dy dx dy dx d ln (x dx 2) 1 x d (x 2 dx 1 2) 1 x 2 ,x 2 2 (1 2x (1 e)x 1 (1 2)x 2 26. 2 2 1 d ln (2x 2) dx 1 ,x 1 x 1 d ln (2 dx sin x 2 cos x d ln (x 2 dx 2x d (2x 2 dx 2) 2x 2 e 1 (1 e)x e 27. dy dx cos x) 2 1 d (2 cos x dx cos x) 8x ln 8 28. 9 x (ln 9) ( x) d dx d dx dy dx 1) 1 x2 d 2 (x 1 dx 1 ln x 1 x 1 x 1) 2x x2 1 9 x ln 9 29. 30. dy dx d ln (ln x) dx dy dx d (x ln x dx 1 d ln x ln x dx 1 x ln x 3csc x (ln 3) (csc x) 3csc x (ln 3)( csc x cot x) 3csc x (ln 3)(csc x cot x) x) ln x (x) (ln x)(1) 1 1 31. dy dx ln x 1 18. dy dx d cot x 3 dx 3 cot x d (ln 3) (cot x) dx 3cot x (ln 3)( csc 2 x) 3cot x (ln 3)(csc 2x) 19. Use logarithmic differentiation. y ln y ln y d (ln y) dx 1 dy y dx dy dx dy dx dy 32. dx d d ln x 2 (log4 x 2) dx dx ln 4 1 2 2 1 ln 4 x x ln 4 x ln 2 d d ln x 1/2 (log5 x) dx dx ln 5 1 1 d 1 (ln x) 2 ln 5 dx 2 ln 5 x d log2 (3x dx 3 ,x (3x 1) ln 2 d dx 2 (ln x) ln 4 x ln x ln x ln x ln x ln x d (ln x)2 dx 1 (2 ln x) x 2y ln x x 2x ln x ln x x ln x d 2 dx ln 5 1 ,x 2x ln 5 1 d (3x 1) ln 2 dx 1 0 1) 33. dy dx 1) 1 3 (3x 34. dy dx 1 d d log10 (x 1)1/2 log10 (x 1) 2 dx dx 1 1 d 1 (x 1) ,x 2 (x 1) ln 10 dx 2(x 1) ln 10 1 d log2 x dx d ( log2 x) dx 1 ,x x ln 2 1 0 35. 36. dy dx dy dx 20. Use logarithmic differentiation. y ln y ln y ln y y dy dx x 1/ln x ln x 1/ln x 1 ln x ln x d 1 1 d (log2 x) dx log2 x (log2 x)2 dx 1 1 1 or (log2 x)2 x ln 2 x(ln 2)(log2 x)2 d (ln 2 log2 x) dx 1 1 (ln 2) ,x x x ln 2 ln 2 x(ln x)2 37. dy dx (ln 2) (log2 x) 0 x ln 3) d dx 1 e d (e) dx d ln (x 2) dx d (ln x)2 dx d ln (x 1) dx 10 d ln x dx 38. 0, x 0 1 (2x) x2 2 ln x x 1 ,x x 2 x dy dx d 1 d log3 (1 x ln 3) (1 dx (1 x ln 3) ln 3 dx ln 3 1 1 ,x (1 x ln 3) ln 3 1 x ln 3 ln 3 d (log10 e x) dx 1 ln 10 d (x log10 e) dx 21. 22. 23. 24. dy dx dy dx dy dx dy dx 1 d 2 (x ) x 2 dx 39. dy dx log10 e ln e ln 10 2 ln x d (ln x) dx d ( ln x) dx d (ln 10 dx 0 1 x 1 ,x x 40. dy dx d ln 10x dx d (x ln 10) dx ln 10 ln x) 0 0 ...
View Full Document

## This note was uploaded on 10/05/2011 for the course MAC 1147 taught by Professor German during the Fall '08 term at University of Florida.

Ask a homework question - tutors are online