Pre-Calc Homework Solutions 148

Pre-Calc Homework Solutions 148 - 148 24. y y Section 4.3 x...

This preview shows page 1. Sign up to view the full content.

24. y 5 x 3/4 (5 2 x ) 5 5 x 3/4 2 x 7/4 y 95 } 1 4 5 } x 2 1/4 2 } 7 4 } x 3/4 5 } 15 4 x 2 1/4 7 x } y 052} 1 1 5 6 } x 2 5/4 2 } 2 1 1 6 } x 2 1/4 5 } 2 3 1 ( 6 7 x x 5 1 /4 5) } Since y 0, 0 for all x . 0, the graph of y is concave down for x . 0. Graphical support: [0, 8] by [ 2 6, 6] (a) 3 0, } 1 7 5 } 4 (b) 3 } 1 7 5 } , 2 (c) None (d) (0, ) (e) Local (and absolute) maximum: 1 } 1 7 5 } , 1 } 1 7 5 } 2 3/4 ? } 2 7 0 } 2 < 1 } 1 7 5 } , 5.06 2 ; local minimum: (0, 0) (f) None 25. y 5 x 1/3 ( x 2 4) 5 x 4/3 2 4 x 1/3 y 4 3 } x 1/3 2 } 4 3 } x 2 2/3 5 } 4 3 x x 2 2/3 4 } y 05 } 4 9 } x 2 2/3 1 } 8 9 } x 2 5/3 5 } 4 9 x x 1 5/3 8 } Graphical support: [ 2 4, 8] by [ 2 6, 8] (a) [1, ) (b) ( 2‘ ,1] (c) ( 2‘ , 2 2) and (0, ) (d) ( 2 2, 0) (e) Local minimum: (1, 2 3) (f) ( 2 2, 6 ˇ 3 2 w ) < ( 2 2, 7.56) and (0, 0) 26. y 5 x 1/4 ( x 1 3) 5 x 5/4 1 3 x 1/4 y 5 4 } x 1/4 1 } 3 4 } x 2 3/4 5 } 5 4 x x 1 3/4 3 } Since y 9. 0 for all x . 0, y is always increasing on its domain x \$ 0. y 1 5 6 } x 2 3/4 2 } 1 9 6 } x 2 7/4 5 } 5 1 x 6 x 2 7/4 9 } Graphical support: [0, 6] by [0, 12] (a) [0, ) (b) None (c) 1 } 9 5 } , 2 (d) 1 0, } 9 5 } 2 (e) Local (and absolute) minimum: (0, 0) (f) 1 } 9 5 } , } 2 5 4 } ? ! 4 } 9 5 } § 2 < 1 } 9 5 } , 5.56 2 27. We use a combination of analytic and grapher techniques to solve this problem. Depending on the viewing window chosen, graphs obtained using NDER may exhibit strange
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online