Physics 102 Formula Sheet

Physics 102 Formula Sheet - Physics 102 FORM 0 FORMULAE...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Physics 102 FORM 0 FORMULAE SHEET I = 1:60 2 10019C; = 9:11 2 10031kg = 0:511M eV =c2; k = 8:99 2 109N m2=C 2 1 1eV = 1:60 2 10019J; 1kW h = 3:6 2 106J; 0 = 4k = 8:85 2 10012C 2=N m2 X E ? 1A = P q ; E =  ; E =  = Q ~ ~ ~ ~ j = k jq1 q2 j ; E = F ; jE j = k jq j ; 8E = jF r2 q0 r2 0 2 0 0 A0 e E = U0 ; q me = kq r 2 V0 0 A QV Q2 E2 Q ; C= ; UE = = CV = 2C ; uE = 02 ; I = 1q C= ; V = V  d 2 2 1t 2 111 V = R = L ; P = WtE = IV = I 2R = VR ; Rs = R1 + R2 +... ; Rp = R1 + R2 +... I A X Iin = X Iout; X E = X IR; 1 = 1 + 1 + ... Cp = C1 + C2 + ... ; V  = RC; WE q = q0Ed = 0q01V; Wnc = 1K + 1U; 1V = 0E 1s; E = C E [1 0 exp(0t= )]; I = R exp(0t= ); Cs q C1 V C2 q = Q exp(0t= ); I =  mv 2 R m = jqjvB; F = I`B sin ;  = N IAB sin ; 0 = 4 2 1007 TA X Bk1` = 0 X I; B = 2rI ; F = 0I1I2 `; B = NR I ; B = 0I N` 2 2d (long) (coil) (solenoid) 8B = BA cos ; E = 0 N 18B ; E = vB`; E = N AB! sin !t; ! = 2f = 2T 1t E h1 0 exp(0t= )i; L 18B = 0N 2A ; E = 0L 1 I ; I= = L=N 1I ` 1t R R V B2 Ns Vs I LI 2  UB = ; uB = ; = Vp = Ip ; P = IrmsVrms; Irms = p02 ; Vrms = p02 2 20 Np Is 2 ; E = cB; c = p 1 = 3:00 2 108m=s; f = c E = E0 sin(kx 0 !t); k= F = qvB sin ; 0  0  1  = 2pLC ; f 0 = f 1 6 u ; c 1U P = A1t = cu; p = U ; I= A c f0 0 0 uB P = uE ; u 2 2 2 = 0E 2 = B0 ; E 2  Erms = E20  1p = F = A 1t = I ; A c I1 = I20 ; I2 = I1 cos2  Physics 102 FORM 0 FORMULAE SHEET II 1 + 1 = 1; do di f c = n ;  = vac n o o 1 1 n1 sin 1 = n2 sin 2 ; sin c = n2 ; tan B = n2 ; f = f11 + f12 ; D = f n1 n1 d sin  = m; m = 0; 1; 2... ; d sin  = (m + 1=2); m = 0; 1; 2... ; (double slit; grating; bright) (double slit; dark)  min  1:22 D ; W sin  = m; m = 1; 2... ; y  sin    (single slit; dark) L (resolution) vac m 2n = t; (m + 1 ) 2vac = t; m = 0; 1; 2... 2 n n bright (dark ) (thin lm; n11<n<n22 or n11>n>n22 ) (dark ) <n>n or n >n<n bright v+ v 1t = p1 1tv02=c2 ; L = L0p1 0 v2=c2; vac = 1 +ababvvbc 2 ; p = p1 m0v~2=c2  m(v)~ v ~ v bc =c 0 0 2GM m0 c2 2 ; K = E 0 E0 ; E 2 = E 0 + p 2 c2 ; R= E 0 = m 0 c2 ; E=p c2 1 0 v2=c2 eV nm ; h=  2h = 1:054 2 10034J s h = 6:626 2 10034 J s = 4:135 2 10015 eV s = 1240 c r = i ; p T f = 6R; 2 = 2:898 2 1003m 1 K; hf = hf 0 + K; h d  hi = 0 di ; = 5:88 2 1010s01K 01; 0 0  = C (1 0 cos ); Kmax v = hf 0 W0; E = hf = mhec = 2:426 pm; dB = h p  h h  5 p2 K= ; 2d sin  = m; 1px 1x  ; 1E 1t  ; T 0 273:15 K = TC = (TF 0 32 ) 2m 2 2 9  nh  = a0 n2 ; a0 = h2 = 0:0529 nm; En = 0E0 Z 2 ; E0 = ke2 = 13:6 eV rn = m e vn Z me ke2 n2 2a 0 1 = j1E j = RZ 2 1 0 1 ; R = E0 = 1:0972107m01; K : 1 = R(Z 01)2 1 0 1    hc n 02 n 2 hc  12 22 1 ms = 6 n = 1; 2; 3; ...; ` = 0; 1; ... ; n 0 1; m` = 0; 61; ... ; 6`; 2 A  A = Z + N; r = r0 A1=3 ; r0 = 1:2 f m Z XN ; 1E = 1mc2; 1 u = 1:6605 2 10027kg = 931:5 M eV =c2; NA = 6:022 2 1023mol01 1N = N; N = N0 exp(0t);  = ln2 ; t = 1 ln R0 ; 1 Ci = 3:70 2 1010Bq R=0 1t T1  R p h = E = ; c fp T m 2 C ...
View Full Document

This note was uploaded on 10/11/2011 for the course PHY 101 taught by Professor Ashkenkai during the Fall '08 term at FIU.

Ask a homework question - tutors are online