SIDDHARTH_AGARWAL_EC1.pdf - STATE DEFINITION BINARY S0...

This preview shows page 1 - 2 out of 2 pages.

STATE DEFINITION TABLE STATE DEFINITION BINARY S 0 Reset = 0, Count = 0 0 0 S 1 Count = 1 0 1 S 2 Count = 2 1 0 S 3 Count = 3 1 1 INPUT CURRENT STATE NEXT STATE X Q 1 Q 0 Q 2 + Q 0 + 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 0 x Q 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 x Q 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 STATE TRANSITION DIAGRAM S 0 S 1 S 2 S 3 X=1 X=1 X=1 X=1 X=0 X=0 X=0 X=0 STATE TRANSITION TABLE K-Map for D Flip-Flops. D 0 D 1 D 0 = X [Q 1 + Q 0 ] D 1 = Q 0 Schematic Diagram for D flip-flop 1
K-Map for J-K Flip-Flops. x Q 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 x Q 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 x Q 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 x Q 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture