Pre-Calculus Practice Problem 57

Pre-Calculus Practice Problem 57 - 6 4 2 2 3 − − + = x...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Unit 2, Activity 2, Discovery using Technology with Answers Blackline Masters, Advanced Math-PreCalculus Page 55 Louisiana Comprehensive Curriculum, Revised 2008 The same effect is noted with this problem as we saw in problem 3. When x is very small -4x 2 is dominant. b) What do you notice about the graphs of 3 x y = and 2 3 4 x x y = when x is a large positive or negative number? The same effect is noted with this problem as we saw in problem 3. When x is very large x 3 is the dominant term. 5. Plot on the same screen the following graphs: 6 4 2 2 3 + = x x x y , 3 x y = , and y = -4 x – 6 a) Compare the three graphs for large positive and negative values of x . The graph of 6 4 2 2 3 + = x x x y is similar to that of y = x 3 for large values of x. b) Compare the three graphs for small positive and negative values of x . The graph of
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6 4 2 2 3 − − + = x x x y is similar to that of the graph of y = -4x – 6 for small values of x. c) Suggest a reason for ignoring the terms x 2 , -4 x , and -6 when considering the shape of the graph in part (a) for large values of x . For the graph of a polynomial function, the term of largest degree is dominant when x is a very large positive or negative number. Let x take on the values of 100, 1000 etc. to illustrate this statement. d) Suggest a reason for ignoring the terms x 3 and x 2 when considering the shape of the graph in part (a) for very small values of x . When x is a small positive or negative number, the terms of smallest degree are the dominant factors. Let x take on the values ¼ and ½ to illustrate this statement....
View Full Document

This note was uploaded on 10/10/2011 for the course MAC 1147 taught by Professor German during the Fall '08 term at University of Florida.

Ask a homework question - tutors are online