hw4-2 - f ( x ) if x is in [-3 , 3]. 9. f ( a ) = 10. f ( x...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Homework 4/2 In all of these problems, use the Mean Value Theorem f ( b ) - f ( a ) b - a = f ( c ) to compute or estimate f ( b ) from the given data. 1. f (2) = 10. f ( x ) = - 3 for all x in [2 , 7]. Find f (7). 2. f (2) = 10. f ( x ) = - 3 for all x in [2 , 7]. Find f (5). 3. f (2) = 10. f ( x ) = - 3 for all x . Find f (20). 4. f (2) = 10. f ( x ) = - 3 for all x . Find f ( x ). 5. f ( - 3) = - 4. f ( x ) 5 for all x in [ - 3 , 3]. Estimate f (3). 6. f (3) = - 4. f ( x ) 5 for all x in [ - 3 , 3]. Estimate f ( - 3). 7. f (3) = - 4. f ( x ) 5 for all x in [ - 3 , 3]. Estimate f (0). 8. f (3) = - 4. f ( x ) 5 for all x in [ - 3 , 3]. Estimate
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: f ( x ) if x is in [-3 , 3]. 9. f ( a ) = 10. f ( x ) > 2 for all x in [ a, b ]. Estimate f ( b ). 10. f ( a ) = 10. f ( x ) > 2 for all x in [ a, b ]. Estimate f ( x ). if x is in ( a, b ). 11. f ( a ) = k . f ( x ) < 0 for all x in [ a, b ]. Estimate f ( b ). 12. f ( a ) = k . f ( x ) < 0 for all x in [ a, b ]. Estimate f ( x ). if x is in ( a, b ). 1...
View Full Document

Ask a homework question - tutors are online