# sol5 - Math 2163 Jeff Merrnin’s sections Quiz 5 October 7...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 2163 Jeff Merrnin’s sections, Quiz 5, October 7 Solo‘l'ions : 1. (2 points each) Indicate whether the following statements are true or false. (“True” means “Always true”, “false” rneans “sometimes false” or “possibly falSe”.) Justify your answers. :3 : x(s,t), y = y(s,t), and all functions appearing here are continuous and differentiable with continuous derivatives of all orders. (a) There is a function g(:1:, y) such that g\$(:1:, y) : 1:2 +y2 and gy(:1:, y) = 2 2 m — y . SOIU‘i-l‘OA ((DR. FUNc‘HOA :11]: (a) There is a function g(z, 3;) such that g;(z, y) = :::2+y2 and 9,,(22, y) = 32—y2. / 7 / l y, *6 +29% fag =47X7— 7.1ng -~ /} V y ' 7M % a /‘ A. ’I//#"& tlyﬁﬁ'f’ "'1 ( HEM/l / I “a / & VIVA M15, “If/“M! W44“ ”* W31”? 47¢ 47% 7%.“ 5 51-5 ,2; . axisi'co‘. “I M7 5010*;0ﬂ: sufvosl- Scalac‘ \$vn¢+fl>ﬁ ] Then 3% Add qr; Lon'i'Mva’ so a" 237’. = 35'0‘4 f) = 7.7 - gr 0‘7") 3 2X - s ‘5 («0 §ino¢ 'Hacse. arc. unulj‘“ [no 0° 3 (mi—{*1 “6 Gigi‘cmcn‘l' f5 \$4M. (b) If w : h(z) is a differentiable function of 2, and z = f(m,y), then ﬂ _ @995 8:: — 62 Soiu‘i'lbn Kyle Kern! PAM, because 9w - 32:91.2 9X, 099?; dz 9W; cm W easel SO\O+;OO 4'0 +LQ )\n'}eﬂr]€c‘ yroLlc/nl ZacL E'Hcr‘! rut W "5 0 ~FJ/1(nl-t'n 0mg Jag/2 :ry' ¥V J‘ A; 939:2.ng W n 'e, W WIN a< 3? E\ E Z :5 0‘ \$UnC+faxy a; 440 Van‘gb/(sl 5° +0 441\$ X J .‘ V J I z, . j (“WC 6? u/ Mn rm/ﬁm :5 X) gov ﬂee ow T11; (Mil/044W) pl? 'Fuﬂc/xU/vs w% )< ﬁrm; and 1’70, w: . . 'j-o 1",:- 0W :fézL! ‘ﬂoo; “on/j do fix/Y V’IC (c) If 2 is déﬁmﬁ iriplicitly as a function of :1: and y by F( 13:11., 2) = 0, then 7 OF (9.x _ EI 62 Solu+ian L7 om qnoay mws s+uclen+ : giﬁl C 706/412 M 9175/7! Finch?) That/1,4 3,131,1c5 Tx‘ 12. 32 (d) Thé dy, dz) isinorinlgl some“ by w, FALgE. TM vahriclxjdmdg 7 (e) If 2 = f(a:,y), then 21, = 2.1% + Zyyt- . 1 ‘3 Solu‘lﬁm (5+evc Perry 3 7 may, :l’lﬂaioi1'iﬁeteinln vté‘humﬁ rt :59 Gimulﬂiﬂv {’0 A1 a 0“ A1 015 W'MZW" XERT {W ( 2. (6 points) Suppose that m2 » +cos(t+et—‘/§£:r—5)—(t+et)( L Find %. (Hint?: Use the chain rule.) goko'l’hm Chan+q\ RoHersonI z = (t+et)e K gig , ‘ I (1+5 ‘ l 2 ,I 5:.(1 + e‘)c ' +(tos(f+c‘— 6‘2”) ~(I—r-é’ 3—,— . \ - - ~ J Find (Hint?: Use the chain rule.) I, X, -M 4 ,(r p ..A \ . ~—-‘ ' is 4 ~ J ".2; \j % .ﬁ‘ X ) X 5;) {» L'- x 04 :1; a}? f " ' ‘1 -A » , 1. "‘x ‘2 . \ i ,2 i ,. \ V . t J L r ‘-i~ h .2” "fl lu’\v x) 1"-) a 1 LC I" - {,V uni"), ) ) X ~31»; r A; 9.25:; y’é l 21 c- / h" ‘ Z L. 4'. :3 ' 4- '1 x I d I 5': "" \7 «J I p: Y a"); {J A M§~_ ‘ > f - A. 23 gt 5 6 my 3. (4 points) Find an equation for the tangent plane to the graph of z = e at (may) = (1:0)- So\o+;0q (USMJ +6\n¢-JI¢I;+ Vcc+or5> z : WW +";<“a,%3<><~a> 45.5mm Solul‘lon (amaler +lm3r4>t a; a luggage“) L7 sqm wag: Xbrl \J U Extra Credit (3 points) Explain the error in the following “proof” that all differentiable functions are constants: Suppose that z = f (2;,y) and y = g(:1:). Then, by the chain rule, 3—; = %%+g—;% = %+g—Z%. Thus 3—;% = 0, so either Q = 0 or \$3 , ,, = 0. Thus either f or g is a constant function in By (1.1. If f (:L', y) = \$+y, which is not constant in 1:, it must follow that g(.’1:) is constant. Since we could have chosen any differentiable g with this choice of f , it follows that all differentiable functions are constants. My Solol'ioni Tl“: Frau?!“ is ‘hk‘l' +l\{ Del-«+130 gor- Pq/‘Hc‘l AUI‘Vr-AH'V‘S 1‘: {- aw€c\. ,5, indcfowlch'f- a; ‘l’k Va‘egnggs in 'H‘g ‘Gormolq 491' 2. F9" “Verls SUPPDSC i= )H)! owl w:x-y. Wm EC¥,y)=¥*-y, bo’r %(x,w)=Zx—w: 3 In +kc 'c“’.")- C‘kkllaizl 1'30")" \‘n +14: 5(a)“) ~53"352. X ‘ 2> .. a :1 ba- d . Hue, ‘ch, v07 Q'i‘cyl' Inc f5 3% ._ 7-2;? gig-r (3—; .i; B 'l" 2L .n +5; ((Q')’ is wl'Hw raped 4-9 “M: 6l‘nalc cpbﬂJMg‘lC 2x}; (I c a} . o ﬂ (At *‘5 g g OLAA 'l’l‘L 3%” 0“ 41¢ rral‘l- I} WI‘H‘ as?“ D c (.90 ma, )9), ‘ ‘ D): “V? «(‘5 ACSQWK“, Qua Caﬂocllfa] 'H'Lm h? ’0‘ 23'. A 30 “s 37 wrmfl‘ To be Nor: Ok’c'nvl/wc 910le “We. wi‘iH‘“ X=é )3?!“ l a A .31— 21:4 A . . rl’bm %:%G¥E+§f5— 7)? + HE?" «A 5"“ MM "C~mJl-J7a1w'~‘ 9094M. V I? g, o 0 ﬂ )— \$— T 9 < r- 3 9 9 3 ...
View Full Document

## This note was uploaded on 10/11/2011 for the course MATH 2163 taught by Professor Staff during the Fall '08 term at Oklahoma State.

### Page1 / 4

sol5 - Math 2163 Jeff Merrnin’s sections Quiz 5 October 7...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online