short1a

# short1a - g ( x ) is shown below. Use it to answer the...

This preview shows pages 1–4. Sign up to view the full content.

Exam 1, Form A M170-007 Fall, 2010 Name: (1 pt.) Show all your work. Regardless of your prior experience with calculus, you must use limit methods for all derivatives on this exam. 1. (15 pts.) A moving object has position (in meters) given by f ( t ) = 3 t 2 - 5 t , with t in seconds. Find its position when its velocity is - 14 m/s. 2. The number of ±sh, P , in a pond is a func- tion of time t (in years) as shown at right. (a) (5 pts.) Compute Δ P on the interval [1 , 1 . 5]. (b) (5 pts.) Compute Δ P Δ t on the interval [1 , 1 . 5]. (c) (5 pts.) Draw a secant line that cor- responds to your answer to (b). (d) (10 pts.) Compute P (1 . 5). Show all work. P (±sh) t (years) 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. (10 pts.) Suppose that f ( x ) = 5 x . Compute f (7). 4. (10 pts.) Compute lim h 0 3 + h - 3 h . 5. (10 pts.) The graph of a function f ( x ) = - x 2 + 4 x - 3 is shown at right, along with a tangent line. Given that the y -intercept of the tangent line is 3 . 25, locate the x -coordinate of the point of tangency. HINT: f ( x ) = - 2 x + 4 f x 2
6. The graph function

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: g ( x ) is shown below. Use it to answer the following questions: (a) (5 pts.) At what points (if any) is g discontinuous? (b) (5 pts.) At what points (if any) is g non-diFerentiable? (c) (5 pts.) At what points (if any) is g ′ ( x ) = 0? (d) (5 pts.) On the axes immediately below the graph of g , sketch a graph of g ′ ( x ). g x g ′ x 3 7. (10 pts.) The temperature, T , of a cooling object is a function of time, x , as shown in the following table: x (minutes) 5 10 15 20 25 T ( ◦ C) 22 15 9 4-3 (a) Estimate the value of T ′ ( x ) for times x = 5, 10, 15 and 20 minutes. Write your answers in the table below. Be sure to include correct units. x (minutes) 5 10 15 20 T ′ ( x ) ( ) (b) T ′ is a function. Compute the derivative of T ′ at time x = 15 minutes. Your answer must include correct units. 4...
View Full Document

## This note was uploaded on 10/11/2011 for the course MATH 170 taught by Professor Staff during the Spring '08 term at Boise State.

### Page1 / 4

short1a - g ( x ) is shown below. Use it to answer the...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online