Problem Set 2(Solution) - Mfi-TS?Y zow—zou Winkr‘...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mfi-TS?Y zow—zou Winkr‘ SCSSConi Probltm 56+ 2 5o'luh‘m5, @La) SHE Ls fig?“ «500': x Luau“). The {lam/Hm is. odd $l§;(e, 50x)» *1. (64):“) = -‘>< (931%) = ~6 (X). Lb) SHE M, H4. 1; '= ‘lxv‘3~'§=0 Mal ’61: sac—43+: =0 we mum's: m w 5:: m+ 3 rs, awash a? x: "55‘ 'fi’“‘*""5 M £27- 352%“? Now we delcrmthe fit Pwas a'l- whack m7 inkfiecfl Qxeyéx’ré é=~'=‘?.f;f3.~x=L:— (an) )(2( This wmponds‘l-o \a>4('1)“g:,4¢_é: f Ward?- M'Rm ivkwyi— a? “He; Pm}? L L) I T6 Wmfnc fie “Jar, «3‘ man ‘Ht {Mas inkréccf, we mole; fiat" ffiyz bf‘ rnzz.%fi I ¢amsl 4f?” i“: firnudfi fimnn $+HE 56 HfiST +an(d]D WWW; k \ kg"? clan/q ___,. L32 5-?th [44403) Li; 1%.. Th»; 0&2 araan-‘Z-E) . CFW'WW #‘3 enouflhlf_w’k ' {mac} : 2; l L? xedQ $HE L6 “as ism-Foo: 0n H1: oW'haml, FF xeal mvpedll ilen ‘x+{>e@~1+f’alloo~2§ ’H‘cd" a {Ly-“k? D :- go -P C9 ‘Pcdacig‘ct 'H‘OUUEVW‘i éfikél mam-is no wanes? 96$); mf'fl’x P20, M5. no Period. SHE 1,. 4, “WI 1" _ C Hh—w—fi me W 663mm m nofa Wch c0901"): Edi. “=9 by: Q 90364). May-we ham (1)2 :- Lfi+ b: M4 c2 : Kola—bf. me fiese 145* M EW‘EEI we. we; fink a." = (La-#5.?“ +6: New clam ‘Hmf Li” be : Chiba Cbszl) ‘3 C(bszr) "LBJ (192+5ID- $03M if!“ dt‘agmm--u:e,‘lrm b=bn+1>2360 we sac; M15 13:- bra-— (mm, 3 .1:— M = my mama)- "qua 6V2: ()2 +101 vzbacosM’D- (cost-$1.? “$2. {vaokéorp a. LPQ = quz‘) 3 ‘63-! NOR, AV'DW(L; (#ajoh) 5“ . ‘ g t ‘ v 5 is, add. We conchde m: In 1g, an beg Puncfibw, '14“. PF 10 is. even Md 3 is 040', flew is... OOH. .45.. we l-Hs‘g. hm pm) H—x). Consu'ckr M’x) = {(w) '* fix) ='- " [VEGO- 75(9):)1 = "l7 05). TM 'h I": GGH. ' 0. 2~ ConsrcLer 90.x): 3(-X+\/C-x32+ti) : 3 (w/xzw iwk)- Nowrbbsfi‘m m1: 3% x70 wt: haw \foH -¥ = (WwXani-r +x) XZH—xa _.—-—'——~—-——_u~._—“ :1 ( szw’ +x) 1/)???" Hg Mus . new); .—. 8 ") 5(‘/X2.Hl+~X) = 30) “3(WH) :O”5CK+W) 3 *3Cx-rW) = "4300 We conclude H044 we 69 a" 06W firm/Jim. a». Wt Cfiflfifda‘ m {Dual/125??) ‘fbwcm: Case I 0(643; 643.963 5E5 942?. \ me “Ht diagram we, see +14% Sincej= 56,; =9 In: aw; “We mm of H2: +mhpate, ($5me ....‘:_r .. J— ‘\ A... Zbk v aabsm C9). FWM ‘H't dt‘ajf‘m we so: ma— flt mm 09% Mfr/1?. given by, gig-£1911. Nous notice, ‘de' scnw= 3 => «=- asmw). Fm 'ch Afraer we. «ac-HAM? «(2 Tiré go M In: aze-mk (JV- 8”) = a 5m?» LG)« Tm, A z 11505le . 4‘ La.) 5% sz3a96x) ~60; Cards-Gabe) =o_ first- we; e.me mam “Hrs: dawmmalc firm“; sin sz): 2&MCK)MSLK)/ and 4mm): cog?“th 5w} 20d. Thus» Drank (mama‘s — cos. (2x) swim) : 2 5w}. (x) cos. meogtx) v (cog-CK) «Sfinzag sin ()0 =- 2-5th m cos? (x) - case“) 5n}: (:0 + aim 3(3) -=— smk Lx) 665.2 CK) + sin’fx) o: slammsz mmx) = sir; fix) (affix) +5”S 900) W n - 5% (X), Sta/ice, (205200 +$MZCXJII 'Cflfhagmiq 336975?) New swiLXFO («a x=~o ma x=7r C14» ero am) I I Lb") 20091ij + L: ?>CD.S.(,2.X) ww‘; Meisz 24,0525,th EwaCZX) +r = Q, Le+ a: wax). w m: aim/sun mars .2425— gm—z 2'01, which mm W fat/5°“: O": Zaz~3¢+é = ZaaHZQ-‘A'F'! 3* ZaCaH) "(5”3) =~ [ga—:)(a~l) ReJmm'rS +0 ooaszF—a, u-fl €eL WM 0-: 2 coffin) -* gcmfiszH =— (2.09302an (cosfaxkt) g i > 005.6sz 2, 9.1.2 coac’ax);[. Ewgtax)?‘i)m-zxrfitufi filf‘game L162; of "UM; x: 594 kn hsmkez 2-3 x: S—é—THNV firsmkea- —-> x=52x=flf 02 x29?” (9 4 a”? In? comma1 ‘foan ax: 2.ch 19—w- scam: M12“. Tksus x= km \ca—sme 'ké-Zt =9 xzoflt. math, we, see, +m+ w, sotwh‘cm xe £0,245“) are a Irma“ ?R_ ‘H x 0’ éfa-E-I W’ fr 2&— CC’) lat—55(3):) —l =0 =9 w$C$x};§ . This. Was +M+ 3x=g+akrc Cm ME) '93, £x="£§+amc (Song ((625 X: TF-l- 25.56.. X: F"+a_l53a Q g 7 3 : 15 HI 1am- x: €15 M? , fitn- x ‘1’ 1' '2? ‘1’ ‘i i. M £$,+L»eéolufians xefiorzrr) am ': E SE- E?" ‘W “if L"? x ‘iifi’i’i’mif 5“) aficz‘xrwémx) :0. I Hans Haw M we sz)= “L” we. can “HM/E fie cith a; max) ‘ I i 3hnCZX)-+finczx)=—O w) shrfiO—M—I :0 :9 gianéém—Jzo. +651 (an) 1+ Elms-M mam: f~—————" 17? I}; szflf‘f—Ql “Wm am —E+m (Gram, mink“? X” 7715* L3? Liane keg) 6x211? 52:1“ 15::— I316“ 12.’ (a ’ Lz.’ I2 I? 5mm): 1L mm 2.x: SE} km LEW keg) =9 K: Srf+£w (Sm k6Z) E” Q 2' 11% m 50(th M3 - ~ 1 Mr: Tr I 1 Kg}; gW/UIF,E_IZE,LTIEST (2.: [2 12, 1; :2 {2 t2. ,2 . ea) 3663(9) -— sscctew 2 < o . L64: Q3; $626.6) 60 wed-— We: incrLuq(:‘va beams} az*%a.+z<o é—v Ca—2)Ca-r)<0. éo‘Lvihfl +0165 'iflefirua-U'F? 5 we Mf' £3" hoéfi 1G” 46 (he), 13/ when (<QCZ. 6% 0L3“ Rafa) , we see Wm‘ our m3:'ru{ (fiaafiy 26$ for" LC. gecfie)<2. mm“ 'HM'E' 56(19):“ l/CdSL’BJ =2) __‘___ \< 603(6) < 2' Thus :4 coscek (. In w MW{ [0, 23$ we, Sec m+ +1463 Meimlflz “140% {w 66 (0,73%) (JCS-En; 213'). La.) Slim fixing) 6U; 6x11) .— : 2W?— (x) cm? L3) » wgacx} 5n}; 26 3) a :: 5}»:be -— SIKhQLE). < gamma t3) + cos 6.x) mixégb) (5w; Manta) # cog (N) 5&(511) —« 5\;\2'()<\ mac? + sikacxs 5W3) vefm 20%) Meg) “mewsté‘m = Sham («35.26331 3102(3)) - éfinng) ($GxZCxl-rcog'2Cx3) .8, Lb) . ‘ k 605-5 69) 1751:4366) __ {:00st +59»; (:9) 3 [0.052(6) - coscepmcfi) mh2(afl . - W ca; cm r m (,9) 00566) my. (:9) I = 6032(6) 'svfitie)ws(@) “(43(6) :: 1-“ sin (390—0559) :— t~ ii 9.6.629) 54) wizfii): £10569) ‘3 a” 6% $61)} L +C€>$ (:6) u T h 59 (AA t- +anm+qngy = L, sdnocmlkcfi.) 605%)60543) (a) ( 00,500 #60663024- ( 5.500 +55; 6(7))?- .gu .— cogzcx) + 2&65CXJC‘QgL3) 1 60292133 4* 51:3 2’00 +2. sfibfisrfig) "V 51;} 213/) (603200 + sin 200) 1— (co‘gaég) +1ch 215 3) “f a (magma) 3 2+ zwsera). (a) T56 double-*aunjta Wei-(r1; {Er cmtfie L‘s, COSCZQ) 3 @5209) "514}. 2(6). NoEe, w, 197 ++e Magmnlacnb‘fy , #14:: was cog-cw) = 605(6) ' (l-coficgfi 2 6:05.216} — H @5266) =» :méce)-—( h) (Lose (a): v: (madam). swim, 005625)” 603169) ' 9626-9) ‘”~ 0 ~— HM) - gnaw) 3 L— 25-15216) '9 S‘WCG): la ( t—coscaej). “’10.. Lb) We hay-e 1,915 (g):§ ans! W Ca) we have (a) : g; New") WWS g}: i Cz~c05696) z; =9 - .: L? ——»>.. mm): ._—~ L 00.5661 2; a“. New observe +hu+ m ‘H'C Fofleooufi {rematc we ham ...
View Full Document

This note was uploaded on 10/13/2011 for the course MATHEMATIC MAT 137 taught by Professor Brainpigott during the Fall '10 term at University of Toronto.

Page1 / 10

Problem Set 2(Solution) - Mfi-TS?Y zow—zou Winkr‘...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online