Problem Set 2(Solution)

# Problem Set 2(Solution) - Mﬁ-TS?Y zow—zou Winkr‘...

This preview shows pages 1–10. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mﬁ-TS?Y zow—zou Winkr‘ SCSSConi Probltm 56+ 2 5o'luh‘m5, @La) SHE Ls ﬁg?“ «500': x Luau“). The {lam/Hm is. odd \$l§;(e, 50x)» *1. (64):“) = -‘>< (931%) = ~6 (X). Lb) SHE M, H4. 1; '= ‘lxv‘3~'§=0 Mal ’61: sac—43+: =0 we mum's: m w 5:: m+ 3 rs, awash a? x: "55‘ 'ﬁ’“‘*""5 M £27- 352%“? Now we delcrmthe ﬁt Pwas a'l- whack m7 inkﬁecfl Qxeyéx’ré é=~'=‘?.f;f3.~x=L:— (an) )(2( This wmponds‘l-o \a>4('1)“g:,4¢_é: f Ward?- M'Rm ivkwyi— a? “He; Pm}? L L) I T6 Wmfnc ﬁe “Jar, «3‘ man ‘Ht {Mas inkréccf, we mole; ﬁat" fﬁyz bf‘ rnzz.%ﬁ I ¢amsl 4f?” i“: ﬁrnudﬁ ﬁmnn \$+HE 56 HﬁST +an(d]D WWW; k \ kg"? clan/q ___,. L32 5-?th [44403) Li; 1%.. Th»; 0&2 araan-‘Z-E) . CFW'WW #‘3 enouﬂhlf_w’k ' {mac} : 2; l L? xedQ \$HE L6 “as ism-Foo: 0n H1: oW'haml, FF xeal mvpedll ilen ‘x+{>e@~1+f’alloo~2§ ’H‘cd" a {Ly-“k? D :- go -P C9 ‘Pcdacig‘ct 'H‘OUUEVW‘i éﬁkél mam-is no wanes? 96\$); mf'ﬂ’x P20, M5. no Period. SHE 1,. 4, “WI 1" _ C Hh—w—ﬁ me W 663mm m nofa Wch c0901"): Edi. “=9 by: Q 90364). May-we ham (1)2 :- Lﬁ+ b: M4 c2 : Kola—bf. me ﬁese 145* M EW‘EEI we. we; ﬁnk a." = (La-#5.?“ +6: New clam ‘Hmf Li” be : Chiba Cbszl) ‘3 C(bszr) "LBJ (192+5ID- \$03M if!“ dt‘agmm--u:e,‘lrm b=bn+1>2360 we sac; M15 13:- bra-— (mm, 3 .1:— M = my mama)- "qua 6V2: ()2 +101 vzbacosM’D- (cost-\$1.? “\$2. {vaokéorp a. LPQ = quz‘) 3 ‘63-! NOR, AV'DW(L; (#ajoh) 5“ . ‘ g t ‘ v 5 is, add. We conchde m: In 1g, an beg Puncﬁbw, '14“. PF 10 is. even Md 3 is 040', ﬂew is... OOH. .45.. we l-Hs‘g. hm pm) H—x). Consu'ckr M’x) = {(w) '* ﬁx) ='- " [VEGO- 75(9):)1 = "l7 05). TM 'h I": GGH. ' 0. 2~ ConsrcLer 90.x): 3(-X+\/C-x32+ti) : 3 (w/xzw iwk)- Nowrbbsﬁ‘m m1: 3% x70 wt: haw \foH -¥ = (WwXani-r +x) XZH—xa _.—-—'——~—-——_u~._—“ :1 ( szw’ +x) 1/)???" Hg Mus . new); .—. 8 ") 5(‘/X2.Hl+~X) = 30) “3(WH) :O”5CK+W) 3 *3Cx-rW) = "4300 We conclude H044 we 69 a" 06W ﬁrm/Jim. a». Wt Cﬁﬂﬁfda‘ m {Dual/125??) ‘fbwcm: Case I 0(643; 643.963 5E5 942?. \ me “Ht diagram we, see +14% Sincej= 56,; =9 In: aw; “We mm of H2: +mhpate, (\$5me ....‘:_r .. J— ‘\ A... Zbk v aabsm C9). FWM ‘H't dt‘ajf‘m we so: ma— ﬂt mm 09% Mfr/1?. given by, gig-£1911. Nous notice, ‘de' scnw= 3 => «=- asmw). Fm 'ch Afraer we. «ac-HAM? «(2 Tiré go M In: aze-mk (JV- 8”) = a 5m?» LG)« Tm, A z 11505le . 4‘ La.) 5% sz3a96x) ~60; Cards-Gabe) =o_ ﬁrst- we; e.me mam “Hrs: dawmmalc ﬁrm“; sin sz): 2&MCK)MSLK)/ and 4mm): cog?“th 5w} 20d. Thus» Drank (mama‘s — cos. (2x) swim) : 2 5w}. (x) cos. meogtx) v (cog-CK) «Sﬁnzag sin ()0 =- 2-5th m cos? (x) - case“) 5n}: (:0 + aim 3(3) -=— smk Lx) 665.2 CK) + sin’fx) o: slammsz mmx) = sir; ﬁx) (afﬁx) +5”S 900) W n - 5% (X), Sta/ice, (205200 +\$MZCXJII 'Cﬂfhagmiq 336975?) New swiLXFO («a x=~o ma x=7r C14» ero am) I I Lb") 20091ij + L: ?>CD.S.(,2.X) ww‘; Meisz 24,0525,th EwaCZX) +r = Q, Le+ a: wax). w m: aim/sun mars .2425— gm—z 2'01, which mm W fat/5°“: O": Zaz~3¢+é = ZaaHZQ-‘A'F'! 3* ZaCaH) "(5”3) =~ [ga—:)(a~l) ReJmm'rS +0 ooaszF—a, u-ﬂ €eL WM 0-: 2 cofﬁn) -* gcmﬁszH =— (2.09302an (cosfaxkt) g i > 005.6sz 2, 9.1.2 coac’ax);[. Ewgtax)?‘i)m-zxrﬁtuﬁ ﬁlf‘game L162; of "UM; x: 594 kn hsmkez 2-3 x: S—é—THNV ﬁrsmkea- —-> x=52x=ﬂf 02 x29?” (9 4 a”? In? comma1 ‘foan ax: 2.ch 19—w- scam: M12“. Tksus x= km \ca—sme 'ké-Zt =9 xzoﬂt. math, we, see, +m+ w, sotwh‘cm xe £0,245“) are a Irma“ ?R_ ‘H x 0’ éfa-E-I W’ fr 2&— CC’) lat—55(3):) —l =0 =9 w\$C\$x};§ . This. Was +M+ 3x=g+akrc Cm ME) '93, £x="£§+amc (Song ((625 X: TF-l- 25.56.. X: F"+a_l53a Q g 7 3 : 15 HI 1am- x: €15 M? , ﬁtn- x ‘1’ 1' '2? ‘1’ ‘i i. M £\$,+L»eéoluﬁans xeﬁorzrr) am ': E SE- E?" ‘W “if L"? x ‘iiﬁ’i’i’mif 5“) aﬁcz‘xrwémx) :0. I Hans Haw M we sz)= “L” we. can “HM/E ﬁe cith a; max) ‘ I i 3hnCZX)-+ﬁnczx)=—O w) shrﬁO—M—I :0 :9 gianéém—Jzo. +651 (an) 1+ Elms-M mam: f~—————" 17? I}; szﬂf‘f—Ql “Wm am —E+m (Gram, mink“? X” 7715* L3? Liane keg) 6x211? 52:1“ 15::— I316“ 12.’ (a ’ Lz.’ I2 I? 5mm): 1L mm 2.x: SE} km LEW keg) =9 K: Srf+£w (Sm k6Z) E” Q 2' 11% m 50(th M3 - ~ 1 Mr: Tr I 1 Kg}; gW/UIF,E_IZE,LTIEST (2.: [2 12, 1; :2 {2 t2. ,2 . ea) 3663(9) -— sscctew 2 < o . L64: Q3; \$626.6) 60 wed-— We: incrLuq(:‘va beams} az*%a.+z<o é—v Ca—2)Ca-r)<0. éo‘Lvihﬂ +0165 'iﬂeﬁrua-U'F? 5 we Mf' £3" hoéﬁ 1G” 46 (he), 13/ when (<QCZ. 6% 0L3“ Rafa) , we see Wm‘ our m3:'ru{ (ﬁaaﬁy 26\$ for" LC. gecﬁe)<2. mm“ 'HM'E' 56(19):“ l/CdSL’BJ =2) __‘___ \< 603(6) < 2' Thus :4 coscek (. In w MW{ [0, 23\$ we, Sec m+ +1463 Meimlflz “140% {w 66 (0,73%) (JCS-En; 213'). La.) Slim ﬁxing) 6U; 6x11) .— : 2W?— (x) cm? L3) » wgacx} 5n}; 26 3) a :: 5}»:be -— SIKhQLE). < gamma t3) + cos 6.x) mixégb) (5w; Manta) # cog (N) 5&(511) —« 5\;\2'()<\ mac? + sikacxs 5W3) vefm 20%) Meg) “mewsté‘m = Sham («35.26331 3102(3)) - éﬁnng) (\$GxZCxl-rcog'2Cx3) .8, Lb) . ‘ k 605-5 69) 1751:4366) __ {:00st +59»; (:9) 3 [0.052(6) - coscepmcﬁ) mh2(aﬂ . - W ca; cm r m (,9) 00566) my. (:9) I = 6032(6) 'svﬁtie)ws(@) “(43(6) :: 1-“ sin (390—0559) :— t~ ii 9.6.629) 54) wizﬁi): £10569) ‘3 a” 6% \$61)} L +C€>\$ (:6) u T h 59 (AA t- +anm+qngy = L, sdnocmlkcﬁ.) 605%)60543) (a) ( 00,500 #60663024- ( 5.500 +55; 6(7))?- .gu .— cogzcx) + 2&65CXJC‘QgL3) 1 60292133 4* 51:3 2’00 +2. sﬁbﬁsrﬁg) "V 51;} 213/) (603200 + sin 200) 1— (co‘gaég) +1ch 215 3) “f a (magma) 3 2+ zwsera). (a) T56 double-*aunjta Wei-(r1; {Er cmtﬁe L‘s, COSCZQ) 3 @5209) "514}. 2(6). NoEe, w, 197 ++e Magmnlacnb‘fy , #14:: was cog-cw) = 605(6) ' (l-coﬁcgﬁ 2 6:05.216} — H @5266) =» :méce)-—( h) (Lose (a): v: (madam). swim, 005625)” 603169) ' 9626-9) ‘”~ 0 ~— HM) - gnaw) 3 L— 25-15216) '9 S‘WCG): la ( t—coscaej). “’10.. Lb) We hay-e 1,915 (g):§ ans! W Ca) we have (a) : g; New") WWS g}: i Cz~c05696) z; =9 - .: L? ——»>.. mm): ._—~ L 00.5661 2; a“. New observe +hu+ m ‘H'C Foﬂeoouﬁ {rematc we ham ...
View Full Document

## This note was uploaded on 10/13/2011 for the course MATHEMATIC MAT 137 taught by Professor Brainpigott during the Fall '10 term at University of Toronto.

### Page1 / 10

Problem Set 2(Solution) - Mﬁ-TS?Y zow—zou Winkr‘...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online