Problem Set 4(Solution)

# Problem Set 4(Solution) - MRTBW ZOIO—20tt Winkr Session L...

This preview shows pages 1–17. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MRTBW ZOIO—20tt Winkr Session: L. Levi- L6 [2. We muse shew 1-inch“? 16?; fax 75L. Thai" (35., wt Musk glam; W Wettigan aw 5min we #cranY \$70 Wk. an x 3% m ~ D< lac—«Kg cwd Had—Ll are. We, mu 4;sz aw“ mak’SfS w? According ‘i‘ke Fauowﬁ 'H’m'e (can: Cast: L}? I C0969: L”? ... ..... .. COG: @t LG. am,ng 9?: In we: can: we Jake 6“";(bﬂ. W6 W‘?‘ show ﬁne-khan? S20 ﬂan: Egan x ﬁnk-tian o<lx~ql<\$ MA H‘cthl» £0.41), Noﬁce Hui {"3 x52; We“ 'GCZ.)=O and [Hm-L4 :— l—(J: L 7/ éLL”?). 'Dcecwfngm‘l‘ke 92c csﬂ 8, 3a»; may mark wh‘sﬁ, "O< (hams, I? 55% a; wok. had xsﬂ-é \$035365 OCH-'btlég (503a: l‘f—éﬂllk = \$245) HZH~§)~LL= l 2—mwé) 4—K T [*Z'Uél’ “2’5; my 3w?) Mel a2__ We chaaﬁz- x=m0w (:2! Li —-§), To see. JMQ} «Hag x mﬁéﬁe; 4w deg/EA mewﬁ‘es we Col/£5538» fwo case; .’ Ca5e£¢)x=2.mfsmtms W4: ﬁlm—ﬁe \$2 ‘9 \$742. Thus o<’tx-<—Ll=~* 2 (q s S, and Ufa—Ll ‘3/ ECU-5})":- & Cats w: soup cadr'er). Cm: (5033‘ 'x=%—§2*In"+lr\is my, use. have “2.5%‘5: => °<\x-~t\=l*%l%%<8 N (‘b‘ %,)—~L‘ a é CL‘?)'—‘E (GL9 we. wag dame}, Cousté—Dl L61: i=3. We HAM-8+ 5mm ‘l'kcﬁ' if: 870 , ’Hnen 'ﬂam as, cm we?) x sum wad- Mix-4142 m6 Han—*Hara. Agmk,mahoe\$c eroue (z! kiwi). To See, ﬁned x 955,63; m dame; W?crh‘eg we cons‘klen We £ouowu~3 ero W. Cm. Cat.)1xv'vz;Thf\$ meang Mi" ce— 5; 5:2 => S714. M 0<~\><"u=2._¢'-t28 Md l4c:\4"t= Io—H: 4; >8=E. dag-(1&3 x=¢t~§z. Agath. me. 9e5+hu+ zﬁq~§ mlm‘dn imﬁizzs ﬂak 512-4. N0” ‘Oélxwd'; \$424.3 MA l£(ﬁ”%ﬁ“ 5H 3 I 2QL¢L*%)”¥1=\“‘H Ed 7, 7+ 753E. ‘ T ‘ 5mm o<S\$%, MG): L4? In ‘an5 mg: we, hm. E: : lL-—?( = (in-L). Vie-wad.- 6mm Wodr ﬁr any 8'70 Were it; an x uoht‘ck SaHbHcs o<lx-—q,le_£ and 1400447, a= {ici—L). an; Hod-M =‘ (9? ONE; ~LQ 5 [?+§~L\ - .L 2. La Le (R we mued' \$how+ha+ lim 73*?!“ “NI-Jr is, m Mi ' X150 5km “We ‘Hwe is- an 9.20 such 4m+ {hr an), 870 ﬁlm is an x spunk 4nd; o<lx~au<g anal [#m—LLM. We; conga-5r 4+1 {tbuoushij {um cal-9:51 cum: MO ‘5 Co-‘EdéD: L710. Cay. (D: (.40 L D Rﬁm‘scasem 1mm. 2: a; {name}. Fe. Posr‘ﬁve Joccauw L< o), We-musf 50mm Wat-(- para-Fly 5'70 “Here (is an X Sud/«M 04Lxl<S «and ‘i— ~L.‘>/2=‘_E x2 2. ' Conﬁrddeb 7x: a . Then we see “W!” "O < IXI: E; < 3. 7450, we observe +Ina+ Ca6¢é35 L710. I In '+m‘s- case we. 112.556 i=t and» +0 cwloéb Mﬁxcl'ﬂd- .L Lemmas“ arb;h~ant7 "Lara: when x is do“, 4b O. 3v . . , ~77 +11 Nome, we: I? I 6” Cascm) .1: i- ..L 2‘ m S '1 In Ms, com: we ham. X3} 35;, < 3 5° o<m< % «S and as we home «Wendy seen, lift] 71 =2. Cam? Cb)= Y: E;- '—7 J. .1erth 0&9: we have gig é\[£‘i} =) S 5:5. Thus 1} 7- 2, LLCLH') 9°+Wv it - L>r cum) * L 2 gm”; 7:. 1+. knows Had: Mm W: Liz—4m. lcm cx)= tank I =- \ ' - ‘ _ x.) shawwdwbmw \ h ‘ f x:- ~2. \m .: -' " X “—” "‘ x—a “2* 3“) Mira 33+ 1 _ X94“ x-ae‘ 300 is. Conﬁ'naoqs m“ 164‘ 27 Z SHE wise .520”: EA X x52 In order w {1 +519: conth cc? 2, we mar-1L haw um Hm: "(MK 46x3= 9C2). x—n" x—sz“ 'No’ee ml: {—0,}:- LMZ; if," 150;} = [mi ALX‘Z. ‘ xez" X921” Arise, hr}: ﬁx); '10}, (I'm/k: 2(["A') . >692." Xez“ , That), (“wavy ~¢ fa beconbhaousmi a, w: WMSI’ have 1M" = act—A) 242 -= l-A 2A2 +A—l :o (ZA~[)(AH)=O 1-) =32! 02 AV]. TkmL r“ﬁr A”; 0" Abl, ‘va -{-’ is thhuoas 0.1” 2 - SHE ‘2.c{ "kc. (a) La a: {932 ~ Wu we {‘5 conb'nams a-l— c Mere Esq 870 2 sudn +m+ ff— hpd<g {than ['FCK)"F'C<‘-'ﬂ< £’-E%:). N000 mofc 'Hmcd' HOCXHF'QLH C 4%) é?) ’£%) 4 {03,-(3(¢)( .— 'FCc 34(0) 4’3 3) 44am 3—. TWl—fs, PC xe (c—SJMS), vh'nen cm {5%) (Hz; (b) Le+ g: "4%) (mm Ls 533\$ Wu 0 leeway. 1%)“). ‘2. «3 < {Cx)-'F(c.)< #13:) 4?) 3M .3) (“FOO< ﬁg) TRus‘ {-F xe- Cﬁéycﬁg) , 'HM’VW —FCX)< (Gt 2- mm be; 1“, 5: u)- ( ). Then {7‘5 canﬁhuoa; 4:? CL Clam“; f! 4 m4 3 m mh'wouﬁ we a). A440, (4(a): Raj—U (c)<o. Mg, by Lb) we know ‘M‘l‘ "erm {‘8 a 870 ‘50 W I‘F xé (Cl-5,053) 44W Mx)<o. mews.f «1 XéLc-‘Q,c.+&),+hen ’ HXDHGCXS (o 6’) \chK afx)‘ SHE 2H H*‘SLI. Le+ 4564,19). 'We. wr‘ﬂ shmﬁqf ‘F {s con/Mucus. a} a. T6 do so we Mu.ng show ﬂat (13 en: ﬁver, ‘Ham (‘3 a 3):) éqdn 'Hnm‘ at lx-c(<§, than (Hx)~1cca)[<e. "173 do £0} we noée ﬁx? I? £70 35 amen: W“ we can ohoasc 8 =— 2.“ Indra! , 1:9 lx-cl<8 ,"l‘hen [HXP‘FCcHé lx~c\4 \$28, Whenew x 6 (cub) . 3. SHE 1.5 “‘12 2 ~ ., (Em hi9?” —.,-. 1W \$anC5x) X—ao 4x2 X,» o '—“"“"-'—'—-—a CoﬁCSX) 4x2 = hm 3993(3)!) 2 ( X60 x “R 460.86st '-= Mn an?» Lax) . g) 2 l km g“ ‘tcosZCsxj = 1ka (SMMJf ‘1 ‘ X—éo 3*? ‘fccgzéaw 5m“: 2.: Me. - mg 095% +m+ Thus. le-OM 5 M ’3") Nova mot-ate. fwd: "Wu X90 (Half; Hag) 5 l. «a m s x-ﬂm s txt. "I'M-1‘ O = Llrtv‘. \xL X30 ET 'h-e Pt‘vxohiws Thom we code “fkoc'l' [ll/Ly X400 :0 X66 SHE Z‘S'ﬂ’qg'. ﬂ: 'l‘p%l‘\$g {Eran X560, ’Hnen we. abgb'koure l‘é‘mlé lel. kc a“ n+0. T’hmfcm ~5lx\ s Hus.me Nova um ~E\x\=~—oc\v;m Em K90 x-—>g MRWU‘S "He-omen we have Mm (106.3%). X-ﬁ U ’EObY -m, 4. we 2.: he : we hex): Hx)-36x). I?- ﬁallom 1w.- had is. aonh'mwws an (Ct/b3 Cbﬁamga 900 anal (36x) an) . Obserw. ﬁned- hCM = ¥m\~5m) <0 M Mb) = 4L1») —~ 5ch 7D- By mIanfm WM mom ﬂame. ts « ce (ax/b) such we: law-=0] Lie, ‘90.):3033. 5‘7“; N, *B‘tt L6: as be He mam we a. mfcmm M “wk 7%, ﬁwxcl (61' In be: (1‘s barmaid: TF9“ mkam ﬂak “'2 P: 2w+2k w) h: P2 to N06: ﬂow? 14: \S a. wnhhwua MUM o{ m on ﬁre [Mm/ad (:0, P6,] x If fole fwa- A wanes. a. MQXI‘MULM Veda»: acF scam. we [0,?é] by : "He EK‘h-etme Vodka Mm. ‘ Tb deforming "H-e wu’cH'k 0"? "HMS mcfandtz We ‘ bunk A 3 «meat goo moi comp‘e'fe Mgcumes-o A=”C°U’Z{)T%_ P E Thus. 5ch new C9. hvﬁesf when 10;; => h: at I (This. Means M++Le my;va wfﬁx [aﬁegk ma 1'; a . I <3» 1&5 . 1? I - cm: X 4 ‘ “C?- w') “4 '9 sz-t sinQCx) M 'G is. conﬂnuou\$ an “K :51 Formula», 41": conh‘nuous on 1:12. i 01‘ N000 obsm H" “’3 7 66?: u? w >o = o + . ~‘Ll = — = no) wozhsm‘w) and . 1 [63 (vi): 6:235“! + F”? l+(*2)a+\$r;12('2} a — (2m) 4.. am 40 gm! 'er Ekmechm vaLw, Woman; ‘H-err. is a ce (“2:10) 5m :OI Wei“ Est Lg '6 cm + -'———-'-‘_‘—' “(41:0 chfgnzfc) PH 143 __ _==> c + .— M. “'42.. Lb.) Le+ {Lu} :: 5m (.XD’X‘H ' Them + is can‘h‘nuous an IR, 1n Mr‘hboddf‘J' We \$126 'Hnod‘ '9 Vs Conb‘nuousm [0,153_ Obscruc Wk 1cm:— squLoVoth == \ 70 and \$0.1): \$MCK)—rc£l -= 1’7: <0 BY Hm: deimk 'VOJIM: Thomm ﬂare (Ts. a. as CORE) sudn "dra‘k‘ QC. :\=0. TRUE (5 aha) — C-H = o a) \$9» (a): 04' 6. Lou) This shJcWA-k rs W. To sac: Wis, wok *tkod: we musk guano 4-er 13\$ qﬁLx) is comh’mmgai 'xm/ Jrhen 119ml (5 conh'nunus afr xzc . Inf— (10;) FE: conhhbwug 0:} X=C, +h-en lim Rx): \céc)‘ X-3C- _ = ‘ = ‘ as»; ccnh‘nw‘fyof Thu}: “tartar: HOG" \{I'Qac‘P—LX)‘ Hm)‘ C Waccbéoiulc valet kas moms +hod- ’l-FCxﬂ E‘s awh‘nuou; a+ x=c. ALTERNAWVELY ‘. we, may; gum, M ac WWW c; a. £ 70 such +ha+ nI? lx—dég ,‘H‘eﬁ '1L{~’(.x)l~l€Cc—)ll<£. W {300 is conﬁmtows, ad" we we know +h0d' ‘H’Ierc; is a 3 >0 gm ‘der \ i—C 'LX'GKS, +hcn l'FCx)'-FCO)‘<E. W:th «spam g, we nok +m+ «39 "lx-clcg, Mn um 419m“ s tum-Raﬁ“ , as dearid. .. [3. Ch) ms sﬂm—l— is False. Consider m faan fix) deﬁned {1460 == -l G? X?/O L I? X<o, Then we wk W’c 'l-Féxal-‘l Gr abl ' x W so is col'iﬁhuacﬁ wi- x=o,omcL yo? ‘FOO E‘s drlsconﬁhuoas (if X50. % ca) ‘lNoh'ct’ﬁaoar FF Hobo or Mﬁh‘wv‘ We 6‘" 4M0 We may Wadi-e. CL\$SLLIM~C Wi' €00)7O and. #65)“. Le}.- (3007- ‘pLﬂ-"X. Beamge 'FLX) C's Conh'nuou5m [0,6 amt +hc {umoh‘qn x is. cmh‘num an [0,1,], use: ﬁ‘haf 300 T5 Continuous cm Lo‘l] , New .Hﬁd 3(0): Quake 7o "Chateaux (CORD) M 3(4):: 'FCD" (<0 (bmsg 74:0)<I). BY 4+1 Inkrmaﬁdc Value Mom “Hyena 173 a c6 Coll) M 3C6):0 . f5! 9(03—C;0 => “FM-T- 0- Lb) Lc-l- 300: {1H0 _ Noh‘ée W1? btcause is donh‘nuous on £0.13} I 30:) «E Cmb'nueug; an 110,11 Le+ M00 = {(1K) ~3Cx3~ 'Eﬁeaus; {— analé 0mg boM; COHHWLLOUé on [0,13 we gee W la is Conth cm 501/3- 'Nouo may: -FCo)——3Co) A: How 10m an4 lam = 1%) ~56» 2 {law 1362): 1503—190). E 4(0): {lax-ﬁnch we wok: +th' x=o sah‘gﬁ‘es'ﬁ-e dcsz‘nml 'PVDch-cr . ‘O+h€ruo€s<a we [mew ﬁned” 25%? 400H§m er I!“— 4m)>{'?u),+hm we see ‘hncck hto)?0 and MU)<O. I? '(LCO) (f0), 'Hmn we see. w "hC0)<O W ACU70. In (:H'bcr ease, H16 Inkrmedrafc Valva Mom gammnka ﬂew: is a. c6— LOID suck m4 kéc)= Ot THE-means, 'and' (ppm); 1064130”: haw-Fax) ='> Hey: How. {(0)0060- 8. sfh 200 l . sin a (x) 7X (.64) W :3 LM ._... x->° X {#60500} X40 X (t “60500) x 'x-Bo X2 V105“) 1» (ow-10d Z ,..'_‘_.___._.. 2 WM —-- D . ,_ .Ho x C L_ <10;ch x so ‘HM, limﬂ- doe: no-f— um- - ~ * t—- cos (x (.9ch 3L0” -—> \ «mi x J —-—> o a; Xﬁo)‘ U; U_ (V- 20. ‘ " I - ?>[ L5 V (“b5 “M 3 ‘ = Km (35*) (fit 3/341) (35% 5+3 +3310 ‘34! Bub-ﬂ z—M GEE: (3215+ £15“) (34’\$+35’Y+32’5'+3V5H) II "him C*3-t)("§ls‘+ 3315+ ~54; + B‘s-H) 9-“ M (3-!) ( "32/5 +315 1-!) B‘Us— +3215- + alley-1" = \im -D ‘5 [ “AZ/5 +2”; +( :— .5 g. “Him Z'VW : [gm LZ-“W'Hu—W) .11.»; WW “ ° \$th+eL2+m) ‘16- cd‘) hm 5M 5“) 2 “M sinﬁax) AX bx X40 an W) x—90 ah Li») M bx ? Hm (5W3 (max bx (ax x-ao ax 5M Cbx) W = ‘\\'M a"; "(My ‘ ‘ it . .9; X60 q)“ b :- EL . 3 b . - (AWE —l , \ Le) tug-‘51: '5‘" 3’) : mm W 5m (.X'If)+ Lat) "l i a x41” x-—>_ *—'—*—-—--——- : 4 = um 6*“ CX’zkod‘Eh 5W3 L15) “ISO-34 ' we». W a K-TF 6 . ' ._Tl.‘ = {um 003’ U E )" ( X”)? M 5 NE 3 O. )3“l t\M To ace ‘thfs we. examiwc 'Hv. one-5136i Cfmﬁg W” lx3~t\ \ﬁm 2&1 "MM "*3"! . X—M‘" hﬁ-ﬁ Xa‘" lXeHL Nohm. +de- 139 km, +hen will: 'Xs‘t SD [(M XB‘\ 1‘ "X3"( 1‘ .— + .r Mn 3 Wt 1" l x'“ baa-u x—H xa-t W9“ On ‘an o’cher launch [9 x64, mu. Wand 3 1’5‘ ‘50 Rm i” H ‘ Y3” .. Tm —( = "l. X'SV' was“ — “22.5 r {,wx} - tx'é \" 531%; 3m om~sataad -‘limﬂ3 am no+ capued, ‘H'a MIME-F docg noé CHM . d \} hm X M 2 Y2!) x2 tum >42 Lx~;>,) x—a 2. x Luca-*4) um x26 m.) X‘s 2 3: (kn) (xi) HM A X"); ¥+2 9‘}; ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 17

Problem Set 4(Solution) - MRTBW ZOIO—20tt Winkr Session L...

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online