cen58933_ch04

# They first boiled water in a large pan and measured

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: t at the surface of the egg is estimated to be 800 W/m2 · °C. If the egg is considered cooked when its center temperature reaches 60°C, determine how long the egg should be kept in the boiling water. cen58933_ch04.qxd 9/10/2002 9:13 AM Page 256 256 HEAT TRANSFER 4–46 Repeat Problem 4–45 for a location at 1610-m elevation such as Denver, Colorado, where the boiling temperature of water is 94.4°C. 4–47 The author and his 6-year-old son have conducted the following experiment to determine the thermal conductivity of a hot dog. They first boiled water in a large pan and measured the temperature of the boiling water to be 94°C, which is not surprising, since they live at an elevation of about 1650 m in Reno, Nevada. They then took a hot dog that is 12.5 cm long and 2.2 cm in diameter and inserted a thermocouple into the midpoint of the hot dog and another thermocouple just under the skin. They waited until both thermocouples read 20°C, which is the ambient temperature. They then dropped the hot dog into boiling water and observed the changes in both temperatures. Exactly 2 min after the hot dog was dropped into the boiling water, they recorded the center and the surface temperatures to be 59°C and 88°C, respectively. The density of the hot dog can be taken to be 980 kg/m3, which is slightly less than the density of water, since the hot dog was observed to be floating in water while being almost completely immersed. The specific heat of a hot dog can be taken to be 3900 J/kg · °C, which is slightly less than that of water, since a hot dog is mostly water. Using transient temperature charts, determine (a) the thermal diffusivity of the hot dog, (b) the thermal conductivity of the hot dog, and (c) the convection heat transfer coefficient. Answers: (a) 2.02 (c) 467 W/m2 · °C. 10 Boiling water 94°C 7 m2/s, (b) 0.771 W/m · °C, Refrigerator 5°F Chicken Ti = 72°F FIGURE P4–49E minimum. The chicken can be treated as a homogeneous spherical object having the properties 74.9 lbm/ft3, Cp 0.98 Btu/lbm · °F, k 0.26 Btu/h · ft · °F, and 0.0035 ft2/h. 4–50 A person puts a few apples into the freezer at 15°C to cool them quickly for guests who are about to arrive. Initially, the apples are at a uniform temperature of 20°C, and the heat transfer coefficient on the surfaces is 8 W/m2 · °C. Treating the apples as 9-cm-diameter spheres and taking their properties to be 840 kg/m3, Cp 3.81 kJ/kg · °C, k 0.418 W/m · °C, and 1.3 10 7 m2/s, determine the center and surface temperatures of the apples in 1 h. Also, determine the amount of heat transfer from each apple. 4–51 Tsurface HOT DOG Tcenter FIGURE P4–47 4–48 Using the data and the answers given in Problem 4–47, determine the center and the surface temperatures of the hot dog 4 min after the start of the cooking. Also determine the amount of heat transferred to the hot dog. 4–49E In a chicken processing plant, whole chickens averaging 5 lb each and initially at 72°F are to be cooled in the racks of a large refrigerator that is maintained at 5°F. The entire chicken is to be cooled below 45°F, but the temperature of the chicken is not to drop below 35°F at any point during refrigeration. The convection heat transfer coefficient and thus the rate of heat transfer from the chicken can be controlled by varying the speed of a circulating fan inside. Determine the heat transfer coefficient that will enable us to meet both temperature constraints while keeping the refrigeration time to a Reconsider Problem 4–50. Using EES (or other) software, investigate the effect of the initial temperature of the apples on the final center and surface temperatures and the amount of heat transfer. Let the initial temperature vary from 2°C to 30°C. Plot the center temperature, the surface temperature, and the amount of heat transfer as a function of the initial temperature, and discuss the results. 4–52 Citrus fruits are very susceptible to cold weather, and extended exposure to subfreezing temperatures can destroy them. Consider an 8-cm-diameter orange that is initially at Ambient air –15°C Orange Ti = 15°C FIGURE P4–52 cen58933_ch04.qxd 9/10/2002 9:13 AM Page 257 257 CHAPTER 4 15°C. A cold front moves in one night, and the ambient temperature suddenly drops to 6°C, with a heat transfer coefficient of 15 W/m2 · °C. Using the properties of water for the orange and assuming the ambient conditions to remain constant for 4 h before the cold front moves out, determine if any part of the orange will freeze that night. 4–53 An 8-cm-diameter potato ( 1100 kg/m3, Cp 3900 J/kg · °C, k 0.6 W/m · °C, and 1.4 10 7 m2/s) that is initially at a uniform temperature of 25°C is baked in an oven at 170°C until a temperature sensor inserted to the center of the potato indicates a reading of 70°C. The potato is then taken out of the oven and wrapped in thick towels so that almost no heat is lost from the baked potato. Assuming the heat transfer coefficient in the oven to be 25 W/m2 · °C, det...
View Full Document

## This note was uploaded on 01/28/2010 for the course HEAT ENG taught by Professor Ghaz during the Spring '10 term at University of Guelph.

Ask a homework question - tutors are online