cen58933_ch10

1054 the condenser of a steam power plant operates at

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: he effects of plate temperature and the angle of the plate from the vertical on the average heat transfer coefficient and the rate at which the condensate drips off. Let the plate temperature vary from 40°C to 90°C and the plate angle from 0° to 60°. Plot the heat transfer coefficient and the rate at which the condensate drips off as the functions of the plate temperature and the tilt angle, and discuss the results. 10–53 Saturated ammonia vapor at 10°C condenses on the outside of a 2-cm-outer-diameter, 8-m-long horizontal tube whose outer surface is maintained at 10°C. Determine (a) the rate of heat transfer from the ammonia and (b) the rate of condensation of ammonia. 10–54 The condenser of a steam power plant operates at a pressure of 4.25 kPa. The condenser consists of 100 horizontal tubes arranged in a 10 10 square array. The tubes are 8 m Cooling water 20°C L=8m Reconsider Problem 10–54. Using EES (or other) software, investigate the effect of the condenser pressure on the rate of heat transfer and the rate of condensation of the steam. Let the condenser pressure vary from 3 kPa to 15 kPa. Plot the rate of heat transfer and the rate of condensation of the steam as a function of the condenser pressure, and discuss the results. 10–56 A large heat exchanger has several columns of tubes, with 20 tubes in each column. The outer diameter of the tubes is 1.5 cm. Saturated steam at 50°C condenses on the outer surfaces of the tubes, which are maintained at 20°C. Determine (a) the average heat transfer coefficient and (b) the rate of condensation of steam per m length of a column. 10–57 Saturated refrigerant-134a vapor at 30°C is to be condensed in a 5-m-long, 1-cm-diameter horizontal tube that is maintained at a temperature of 20°C. If the refrigerant enters the tube at a rate of 2.5 kg/min, determine the fraction of the refrigerant that will have condensed at the end of the tube. 10–58 Repeat Problem 10–57 for a tube length of 8 m. Answer: 17.2 percent 10–59 Reconsider Problem 10–57. Using EES (or other) software, plot the fraction of the refrigerant condensed at the end of the t...
View Full Document

This note was uploaded on 01/28/2010 for the course HEAT ENG taught by Professor Ghaz during the Spring '10 term at University of Guelph.

Ask a homework question - tutors are online