Pool boiling of a fluid can also be achieved by

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: top of a stove is an example of pool boiling. Pool boiling of a fluid can also be achieved by placing a heating coil in the fluid. In flow boiling, the fluid is forced to move in a heated pipe or over a surface by external means such as a pump. Therefore, flow boiling is always accompanied by other convection effects. Pool and flow boiling are further classified as subcooled boiling or saturated boiling, depending on the bulk liquid temperature (Fig. 10–4). Boiling is said to be subcooled (or local) when the temperature of the main body of the liquid is below the saturation temperature Tsat (i.e., the bulk of the liquid is subcooled) and saturated (or bulk) when the temperature of the liquid is equal to Tsat (i.e., the bulk of the liquid is saturated). At the early stages of boiling, the bubbles are confined to a narrow region near the hot surface. This is because the liquid adjacent to the hot surface vaporizes as a result of being heated above its saturation temperature. But these bubbles disappear soon after they move away from the hot surface as a result of heat transfer from the bubbles to the cooler liquid surrounding them. This happens when the bulk of the liquid is at a lower temperature than the saturation temperature. The bubbles serve as “energy movers” from the hot surface into the liquid body by absorbing heat from the hot surface and releasing it into the liquid as they condense and collapse. Boiling in this case is confined to a region in the locality of the hot surface and is appropriately called local or subcooled boiling. When the entire liquid body reaches the saturation temperature, the bubbles start rising to the top. We can see bubbles throughout the bulk of the liquid, Heating Heating (a) Pool boiling (b) Flow boiling FIGURE 10–3 Classification of boiling on the basis of the presence of bulk fluid motion. P = 1 atm P = 1 atm Subcooled 80°C water 107°C Saturated 100°C water 107°C Bubble Heating Heating (a) Subcooled boiling (b) Saturated boiling FIGURE 10–4 Classification of boiling...
View Full Document

This note was uploaded on 01/28/2010 for the course HEAT ENG taught by Professor Ghaz during the Spring '10 term at University of Guelph.

Ask a homework question - tutors are online